Trapped energetic electron curtains produced by thunderstorm driven relativistic runaway electrons

N. G. Lehtinen, U. S. Inan, and T. F. Bell
STAR Laboratory, Stanford University, Stanford, CA 94305

Abstract. Relativistic runaway electron beams driven upward by intense lightning-generated quasielectrostatic (QE) fields undergo intense interactions with the background magnetospheric plasma, leading to rapid nonlinear growth of Langmuir waves. The beam electrons are strongly scattered by the waves in both pitch angle and energy, within one interhemispheric traverse along the Earth’s magnetic field lines. While those electrons within the loss cone precipitate out, most of the electrons execute bounce and drift motions, forming detectable trapped curtains of energetic electrons.

1. Introduction

Energetic runaway electrons above thunderstorms, driven upward by intense QE field following positive cloud-to-ground (+CG) discharges, has been put forth [Roussel-Dupré et al., 1998 and references therein] as a fundamentally new plasma acceleration process [Gurevich et al., 1992], leading to the generation of terrestrial γ-ray flashes (TGF) [Fishman et al., 1994; Lehtinen et al., 1996; 1997]. In this paper, we consider the pitch angle and energy scattering of the electrons which escape from the ionosphere due to beam-plasma interactions in the radiation belts, leading to the formation of trapped electron “curtains”.

2. Formation of the runaway beam

The upward driven relativistic runaway beam is produced as a result of the QE field which temporarily exists at high altitudes following +CG lightning discharges. The pre-discharge thundercloud can be modelled as a system of point or horizontal disk charges +Q and −Q at altitudes \(h_{+} \) and \(h_{-} \), respectively. The lightning discharge lowers +Q to the ground in time \(\tau = 1 \) ms, thereby creating the QE field due to uncompensated space charge [Pasko et al., 1997; Lehtinen et al., 1997].

The intense downward QE field exists until the conducting upper atmosphere relaxes in several to tens of ms, during which time seed relativistic electrons (e.g., produced by cosmic ray showers) are accelerated upward, colliding with air molecules in an avalanche process, resulting in the formation of an intense relativistic runaway electron beam [Roussel-Dupré et al., 1998 and references therein; Lehtinen et al., 1997; 1999].

Since the duration of the QE field is much longer than the time of travel for relativistic electrons from cloud tops to the ionosphere, a stationary continuity equation [Bell et al., 1995] can be used to calculate the number density \(N_{R} \) of the runaway beam:

\[
v_{R} \frac{dN_{R}}{dz} = \gamma_{R}(N_{m}, E)N_{R} + S_{0}(z) \tag{1}
\]

where \(v_{R} \) is the runaway velocity, \(\gamma_{R} \) is the avalanche growth rate, \(S_{0}(z) \) is the source of energetic electrons from cosmic rays. The growth rate \(\gamma_{R} \) > 0 only when the electric field exceeds the runaway threshold field \(E_{r} \) proportional to the neutral air density \(N_{m} \) [e.g., Gurevich et al., 1992]. Using a Monte Carlo model [Lehtinen et al., 1999], we calculate \(\gamma_{R} \) as a function of \(N_{m} \) and electric field \(E \) and the velocity \(v_{R} \), which is found to be \(v_{R} \approx 0.9c \). The source \(S_{0}(z) \) is due to cosmic rays, with \(S_{0} \) proportional to \(N_{m} \) and \(S_{0} = 10 \) m\(^{-3}\)s\(^{-1}\) at 10 km [Bell et al., 1995].

To calculate the QE field, we assume an air conductivity profile \(\sigma = \sigma_{0}e^{-z/H} \), with \(H = 10 \) km, consistent with measurements [Holzworth et al., 1985]. Rapid removal of \(+Q\) by lightning is equivalent to instantaneous placement of \(Q_{eq} = -Q \) at the same location. Since the E field relaxation time \((\sigma_{0}/\sigma) \) at the altitudes of avalanche is relatively long, the field of \(Q_{eq} \) can be assumed to be the same as in vacuum. The driving QE field is then given as the sum of the stationary pre-discharge thundercloud field in the stratified conducting atmosphere [Volland, 1984, p. 34] and the vacuum field of \(Q_{eq} \), as well as the fields of the corresponding image charges due to conducting Earth’s surface, all of which can be expressed in terms of compact analytical expressions. The total E field is used to calculate \(\gamma_{R} \) (using results of [Lehtinen et al., 1999]), in solving equation (1), for which we assume \(N_{R} = 0 \) at an initial altitude 18 km for \(h_{+} = 10 \) km and 20 km for \(h_{-} = 20 \) km. We take the upper limit of our solution domain to be the ionospheric boundary at 80 km.

Based on past work [Lehtinen et al., 1999], the magnitude of the runaway electron flux escaping upward from the ionosphere is insignificantly affected by the geomagnetic field for latitudes >45°. The density \(N_{R} \) of the runaway beam escaping from the lower ionosphere determined by numerical solution of equation (1) is shown in Figure 1 for \(h_{+} = 10 \) km and \(h_{-} = 20 \) km. We see that \(N_{R} \) depends nonlinearly on the discharge value \(Q \), and is also greater for a higher \(h_{+} \).

3. Interaction of the runaway beam with the magnetospheric plasma

The relativistic runaway electron beam entering the magnetosphere can interact with the background plasma during its field-aligned transport between hemispheres. The problem of a cold relativistic beam travelling between geomagnetically conjugate points was considered by Khazanov et al. [1999]. In our case, the beam exhibits a wide range of electron energies [Lehtinen et al., 1999], so that we must consider the growth rate \(\Gamma \) of a hot beam-plasma instability.
We set out to determine whether Γ is high enough to lead to significant growth of Langmuir waves during a single interhemispheric traverse. If such growth does occur, the beam loses energy to waves and is also scattered in pitch angle. If, on the other hand, Γ is small, then we can conclude that the beam remains largely intact during its traverse, with most of the particles arriving at the conjugate hemisphere with pitch angles well below the loss cone and thus precipitating into the lower ionosphere.

To determine Γ, we adopt the usual procedure of using the dispersion relation describing the complex permittivity $\epsilon(\omega,k)$ of the system to evaluate the imaginary part of frequency ω.

3.1. Growth rate Γ of the beam-plasma instability

The beam-plasma permittivity for a set of beams α (all having velocities parallel to the same axis) is given by [e.g., Stix, 1962, p. 111]:

$$
\epsilon = 1 - \sum_{\alpha} \frac{q_{\alpha}^2 N_{\alpha}}{m_{\alpha} \epsilon_0 m_{\alpha}} \frac{1}{(\omega - kV_{\alpha})^2}
$$

where N_{α} are the densities of the beams, m_{α} and q_{α} are the masses and the charges of the particles constituting the beams. For relativistic beams, we use the mass $m_{||} = m/(1 - \beta^2)^{1/2}$, where $\beta = v/c$. An individual relativistic “hot” beam having a range of parallel momenta p can be represented as a superposition of beams each with density $N_{\alpha} = N_R f(p) \Delta p$, with $f(p)$ being the momentum distribution function normalized to 1, so that the permittivity of a “hot beam-cold background plasma” system is given by

$$
\epsilon(\omega, k) = 1 - \frac{\omega_0^2}{\omega^2} - \frac{\omega_0^2}{\omega^2} \frac{N_R}{\omega_0} \int \frac{(1 - \beta^2)^{3/2} f(p) dp}{(\omega - kc\beta)^2},
$$

where N_R is the magnetospheric ambient plasma density and $\omega_0 = \sqrt{\epsilon_0 m_e c^2}$ is the corresponding plasma frequency.

The momentum distribution of electrons in the relativistic runaway beam escaping upward from the lower ionosphere has been evaluated using a Monte Carlo method [Lehtinen et al., 1999] and can be approximated with a log-normal analytical fit:

$$
f(p) = \frac{1}{p \sqrt{2\pi \sigma}} \exp \left\{ -\frac{1}{2\sigma^2} \left[\ln \left(\frac{p}{p_0} \right) \right]^2 \right\}, \quad (3)
$$

where $p_0 = 8.9 m_e c$ and $\sigma = 0.94 m_e c$ give the best fit to electron distribution for a discharge with $Q = 500$ C at altitude of 400 km, above which Coulomb collisions can be neglected for our calculations. This distribution is shown in Figure 2. Monte Carlo calculations further indicate that we can neglect p_\perp compared to p.

We now calculate Γ under the assumption that $N_R \ll N_0$. To utilize published beam-plasma system growth rate formulas for non-relativistic beams, we denote

$$
F(\beta) \equiv (1 - \beta^2)^{3/2} f(p) \frac{dp}{d\beta} = m_e c f(p(\beta)).
$$

We find $\Gamma \equiv \Im \omega$ for time dependence $e^{-i\omega t}$ from the formula [e.g., Krall and Trivelpiece, 1986, p. 389]:

$$
\Gamma = -\frac{\Im \epsilon}{\partial \Re \epsilon/\partial \omega}
$$

where the values are taken at the point (ω, k) where $\Re \epsilon = 0$. Substituting for ϵ from equation (2) we find $\partial \Re \epsilon/\partial \omega \simeq 2/\omega_0$ for small N_R/N_0 and

$$
\Gamma = \frac{N_R}{N_0} \frac{\pi \omega_0}{2} \left(\frac{\omega}{ck} \right)^2 \frac{dF}{d\beta} \bigg|_{\beta = \omega_0/(ck)}
$$

with a maximal value of

$$
\Gamma \simeq 25 \frac{N_R}{N_0} \omega_0 \simeq 0.05 N_R \text{s}^{-1}, \quad N_R \text{ in m}^{-3}
$$

for an assumed value $N_0 \simeq 10^9$ m$^{-3}$ and the beam distribution (3).

Interaction of the beam with the background plasma becomes significant if the bounce time $t_B \simeq 0.2$ s for the electron beam is comparable to the characteristic growth time.

![Figure 1](image1.png)

Figure 1. The number density N_R of the runaway electron beam escaping upward from the lower ionosphere: (1) $h_\perp = 10$ km; (2) $h_\perp = 20$ km. The negative charge altitude is $h_- = 5$ km in both cases.

![Figure 2](image2.png)

Figure 2. The momentum distribution of the runaway electrons calculated with a Monte Carlo model and an analytical (log-normal) fit.
\[\Gamma^{-1}. \] From (5), \(t \rho \Gamma \simeq 1 \) for \(N_R \simeq 100 \text{ m}^{-3} \), so that significant pitch angle scattering and energy degradation of the beam occurs for \(N_R > 100 \text{ m}^{-3} \). Note that \(\Gamma \) is proportional to \(N_0^{-1/2} \), so that the maximum interaction occurs near the equatorial plane, where \(N_0 \) is a minimum.

It is instructive to compare the \(\Gamma \) calculated above to the instability \(\Gamma_{\text{cold}} \) of a cold relativistic beam. If we use assume that all electrons in the beam have the momentum equal to the mean momentum from Monte Carlo calculations, we find \(\Gamma_{\text{cold}} \) from a nonrelativistic expression [e.g., Tsytovich, 1995, p. 224] by substitution \(m_e \rightarrow m_0 \equiv m_e \gamma^2 \) for the electrons in the beam which have a typical relativistic factor \(\gamma = (1 - v^2/c^2)^{-1/2} \simeq 10: \)

\[
\Gamma_{\text{cold}} = \sqrt{3 \frac{\omega_0}{\gamma}} \left(\frac{N_R}{N_0} \right)^{1/3} \simeq 150N_0^{1/3} \text{s}^{-1}, \tag{6}
\]

where \(N_R \) is in \(\text{m}^{-3} \), \(N_R \ll N_0, N_0 \simeq 10^9 \text{ m}^{-3} \). Comparison of \(\Gamma_{\text{cold}} \) with (5) for typical parameters indicate that the assumption of a cold monoenergetic beam results in a much higher growth rate.

3.2. Nonlinear growth and resultant electron distribution

The number density of the energetic electrons in the beam is estimated from comparison with experimental data on the terrestrial \(\gamma \)-ray flashes (TGF) [Fishman et al., 1994]. The \(\gamma \)-photon bremsstrahlung production rate is proportional to \(N_0 \cdot N_R \). According to numerical solutions of equation (1), most \(\gamma \)-ray emissions are emitted at altitudes 60–75 km. The correct observed \(\gamma \)-ray flux is then obtained for energetic electron densities of \(N_R \simeq 10^4 \) to \(10^5 \text{ m}^{-3} \). Similar results were also obtained by Lehtinen et al. [1997]. Other models predict maximum \(\gamma \)-photon emissivity at heights \(\sim 40 \text{ km} \) [Milikh and Valdivia, 1999] and a different maximum value of \(N_R \).

For such high values of \(N_R \), it is clear from (5) that the linear growth rate is very high, so that the instability rapidly grows into the nonlinear regime during the traversal of the runaway beam between hemispheres. In such a case, the evolution of the distribution of the beam electrons can only be determined via detailed computer simulations, which are beyond the scope of this work. Nevertheless, we can estimate the electron distribution subject to certain assumptions and with reference to published simulation results.

Based on qualitative estimates confirmed by computer simulation work [Birdsall and Langdon, 1991, p. 117], in the advanced nonlinear stage of interaction of a one-dimensional cold and non-relativistic electron beam with longitudinal Langmuir waves, the maximum energy density of the wave field has the value:

\[
W_E = \frac{1}{4} \varepsilon_0 E^2 \left(\frac{N_R}{2N_0} \right)^{1/3} W_R, \tag{7}
\]

where \(W_R \) is the energy density in the beam. Assuming that the results do not change qualitatively for the case of a relativistic beam, and that the initial beam density is \(N_R = 10^5 \text{ m}^{-3} \), we obtain the relative energy loss of \(\sim (N_R/2N_0)^{1/3} \lesssim 10\% \). Note that based on the comparison of (5) and (6), the growth rate and thus the energy degradation of the beam should be even smaller for a hot initial distribution, so that the relative energy loss of \(\sim 10\% \) is an upper bound for our case.

3.3. Formation of trapped electron curtains

For the sake of discussion, and with the above caveats in mind, we proceed by assuming that the intense beam-plasma interaction transforms the relativistic runaway beam consisting of electrons with pitch angles near zero and with an initial momentum distribution as given in (3) to an isotropic thermal distribution with typical energy \(\gtrsim 1 \text{ MeV} \). Assuming an initial beam density of up to \(10^5 \text{ m}^{-3} \), a beam radius of \(\sim 10 \text{ km} \), and a process duration of \(\sim 1 \text{ ms} \) [Lehtinen et al., 1997], a total of \(N_0 \sim 3 \times 10^{18} \) electrons are initially injected into the radiation belts. After isotropization, only a small fraction (\(2-10\% \)) of these electrons are in the loss cone and precipitate in the conjugate hemisphere. The remaining electrons are trapped, and bounce back and forth between hemispheres, while at the same time drifting eastward in longitude. After a few bounces, the electrons that are not precipitated fill up the geomagnetic field tube. For \(\sim 45^\circ \) geomagnetic latitude, the length of the geomagnetic field line of \(\sim 2 \times 10^7 \text{ m} \), with the geomagnetic field at the equator being smaller by a factor of \(\sim 10 \), resulting in electron density \(N_e \simeq 150 \text{ m}^{-3} \) at the equator, corresponding to a differential energy flux of electrons at \(\sim 1 \text{ MeV} \) of \(\Phi_E \sim 3 \times 10^2 \text{ el-cm}^{-2} \text{s}^{-1} \text{keV}^{-1} \).

The trapped electrons drift eastward due to curvature and gradient of the geomagnetic field, with a period \(\tau_d \) given in equation (4.47) by Walt [1994] on p. 49. For 1 MeV electrons at \(45^\circ \) invariant magnetic latitude (corresponding to \(L = 2 \)), and for equatorial electron pitch angle \(\alpha_{eq} \simeq 90^\circ \), we have \(\tau_d \simeq 10^3 \text{ s} \). Due to the fact that electrons...
with higher energies drift in longitude at a greater rate, the
trapped electrons eventually form electron curtains as shown
in Figure 3. After several drift periods, when the curtain
wraps around the Earth and electrons of different energies
mix together, the omnidirectional flux of electrons can be
estimated by comparing the 10 km longitudinal beam radius
with the distance around the globe at \(L = 2 \). Based on
these considerations, we find the flux of electrons at energy
\(\sim 1 \text{ MeV} \) at the geomagnetic equator to be
\(\Phi_\gamma \approx 7 \times 10^{-2} \text{ el-cm}^{-2}\text{-s}^{-1}\text{-keV}^{-1} \).

Preliminary calculations indicate that such fluxes may
be detectable on satellites with high time resolution and
sensitive detectors. Noting that the latitudinal extent of the
original beam is \(\sim 10 - 20 \text{ km} \), the curtains would be traversed
by a polar orbiting satellite within a few seconds. A detector
with a geometric factor of \(\sim 1 \text{ cm}^2\text{-sr} \) would measure a total
number of \(\sim 100 \) electrons of \(> 1 \text{ MeV} \) energy.

4. Summary and conclusions

We considered the fate of energetic runaway beams driven
upward by intense thundercloud fields produced by large
positive cloud-to-ground discharges. Based on the velocity
space distribution function of such beams as determined
by Monte Carlo methods \([\text{Lehtinen et al.}, 1999] \), we have
determined that the runaway electron beam intensely inter-
acts with the background magnetospheric plasma, leading to
rapid nonlinear growth of Langmuir waves and pitch angle
and energy scattering of the beam electrons. The end result
of this interaction is the ionization and thermalization of the
electron distribution function, leading to the trapping of
most of the beam electrons in the radiation belts, and the
formation of detectable trapped electron curtains (Figure 3).

Acknowledgments. This work was supported by NASA
under grant NAGW4738 to Stanford University.

References

Bell, T. F., V. P. Pasko, and U. S. Inan, Runaway electrons as a
source of red sprites in the mesosphere, \textit{Geophys. Res. Lett.},

Fishman, G. J., P. N. Bhat, R. Malozzi, J. M. Horack, T. Koshut,
C. Kouveliotou, G. N. Pendleton, C. A. Meegan, R. B. Wilson,
W. S. Paciesas, S. J. Goodman, and H. J. Christian, Discovery
of intense gamma-ray flashes of atmospheric origin, \textit{Science},

Gurevich, A. V., G. M. Milikh, and R. A. Roussel-Dupré, Run-
away mechanism of air breakdown and preconditioning during

Holzworth, R. H., M. C. Kelley, C. L. Siefing, L. C. Hale and
J. T. Mitchell, Electrical measurements in the atmosphere and
the ionosphere over an active thunderstorm. 2. Direct current
electric fields and conductivity, \textit{J. Geophys. Res.}, 90, 9824,
1985.

Khazanov, G. V., M. W. Liemohn, E. N. Krivorutsky, J. U.
Konzyra, and B. E. Gilchrist, Interhemispheric transport of rel-

Lehtinen, N. G., M. Walt, U. S. Inan, T. F. Bell and V. P.
Pasko, \(\gamma \)-ray emission produced by a relativistic beam of run-
away electrons accelerated by quasi-electrostatic thundercloud

Lehtinen, N. G., T. F. Bell, V. P. Pasko, and U. S. Inan, A
two-dimensional model of runaway electron beams driven by

Lehtinen, N. G., T. F. Bell, and U. S. Inan, Monte Carlo simula-
tion of runaway MeV electron breakdown with application to
red sprites and terrestrial gamma ray flashes, \textit{J. Geophys.

Milikh, G. and J. A. Valdivia, Model of Gamma Ray Flashes due

Pasko, V. P., U. S. Inan, T. F. Bell and Y. N. Taranenko, Sprites
produced by quasi-electrostatic heating and ionization in the

Roussel-Dupré, R., E. Symbalisty, Y. Taranenko, and
V. Yukhimuk, Simulations of high-altitude discharges initiated
by runaway breakdown, \textit{J. Atmos. Sol. Terr. Phys.}, 60
917, 1998.

York, 1962.

Tsytovich, V. N., \textit{Lectures on Non-linear Plasma Kinetics},

Volland, H., \textit{Atmospheric Electrodynamics}, Springer-Verlag, New

Walt, M., \textit{Introduction to Geomagnetically Trapped Radiation},

(Received November 17, 1999, accepted January 4, 2000.)