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Goal and approach 

Electric streamer discharges are ionized columns in 
gas or liquid, which advance by ionizing the material in 
front of them with the enhanced field at the streamer tip 
[1]. Streamers in air are an important stage of lightning 
discharge, and have been extensively studied by methods 
which include such computationally-intensive numerical 
approaches as adaptive mesh refinement 3D hydrody-
namic models and PIC (Particle-In-Cell) simulations. The 
numerical approaches reproduce approximately the ex-
perimentally measured streamer parameters, but still 
leave open the question of what physical principles de-
termine such streamer characteristics as their speed and 
transverse size (radius). Our goal is to isolate these physi-
cal principles and find a way to quickly determine 
streamer parameters without performing complicated 
numerical simulations. 

We apply the following approach to achieve this 
goal: (1) look for a solution of physics equations in the 
shape of a streamer (i.e., a column attached to a conduct-
ing electrode, see Fig. 1); (2) simplify the PDEs describ-
ing the discharge to obtain a finite system of algebraic 
equations for a finite number of streamer parameters; and 
(3) solve it, with laboratory-condition fixed external elec-
tric field Ee and streamer length L. 

 

 
 

Fig. 1. Streamer shape 

System of algebraic equations and its solution 

We have identified the following algebraic equations: 
(1) relation between electric fields, determined by elec-
trostatic redistribution of charges on the streamer surface; 
(2) continuity of total (conductivity + displacement) cur-
rent flowing through the streamer front; (3) relation be-
tween the ionization and front electric field which follows 
from the flat front theory [2]; and (4) velocity-radius rela-
tion, determined by the photoionization mechanism [3].  

This system, however, does not have a unique solu-
tion, as one of parameters remains free. It is convenient to 
choose streamer radius a as such parameter. In particular, 
we now can obtain functional dependences of the stream-
er velocity V(a), such as those shown in Fig. 2. Some of 
the equations which comprise the above system were 
identified, e.g., by [4], who approached solving them by 
arbitrarily fixing some of the streamer parameters. We 

will show that a unique solution still may be found with-
out such artificial fixing, but by applying same considera-
tions as used in the flat-front perturbation theory. 

 
 

Fig. 2. Solutions of the simplified system of algebraic equations 
describing a positive streamer, in the form of velocity as a func-
tion of radius, V(a). Here we present solutions for given stream-
er length L=120 mm and selected values of external electric 
field Ee (see legend). By analogy with flat-front perturbation 
theory, these curves may be called “dispersion curves,” and 
each point of a curve is a streamer “mode.” A dot on each curve 
denotes the maximum velocity, which corresponds to the “pre-
ferred” solution. 

 Analogy with the flat-front perturbation theory 

We argue that non-uniqueness of the solution is in-
herent in the physical system. Let us consider the flat-
front perturbation theory [5]. It solves the same physical 
system, but instead of a streamer shape (Fig. 1), the solu-
tion is sought in the shape of small perturbations of a flat 
ionization front, which are harmonic in the transverse 
direction with an arbitrary wavenumber k. Linearization 
reduces the system of PDEs describing the discharge to a 
linear system of ODEs. Some of the perturbations are 
unstable and grow in time exponentially with growth rate 
s(k). This function is called “dispersion relation,” and 
solutions at fixed k are called “modes.” As we see, simi-
larly to the streamer problem, there is also one free pa-
rameter, namely k, which characterizes the transverse size 
and is therefore analogous to streamer radius a~1/k. The 
perturbation corresponding to the maximum of s(k) grows 
the fastest, and is therefore the “preferred” solution, 
which on long time scales corresponds to the real physi-
cal outcome of the system if the initial perturbations were 
random. In the streamer problem, there is no direct analog 
of s, but we note that the velocity of the flat-front pertur-
bation V = s(k)L in respect to the front also has a maxi-
mum at the same value of k, if the perturbation “length” 
(i.e. spatial scale along propagation) L is fixed. Thus, we 
propose that the streamer problem also has the “pre-
ferred” solution at the maximum of V(a), which now may 
also be called the “dispersion equation.” The selection of 
the preferred solution will be referred to as “max-V crite-



rion.” Solutions with smaller V corresponding to other 
values of a may be called streamer “modes.” They are 
valid physical solutions, but are suppressed by the faster-
propagating  max-V solution. 

Results for laboratory conditions (STP) 

The calculation results after application of the max-V 
criterion for positive streamers are presented in Fig. 3. 
The black curve in Fig. 3(a) is the experimental meas-
urement of [6], for zero air humidity. We see that the 
presented theory gives reasonable values for streamer 
velocities and radii. Analogous curves for negative 
streamers will be presented in the full paper [7]. 

 

 
 

Fig. 3. Results for positive streamers: velocity and radius as a 
function of external electric field Ee, for three different values of 
streamer length L. The dots correspond to maxima marked in 
Fig. 2. Black curve is the experimental result of [6]. 

Streamer threshold fields 

The threshold field E±t is the minimum Ee at which 
propagation is still possible. It depends on L and has a 
different physical reason for different streamer polarities. 
For positive streamers, the quenching of propagation is 
due to three-body attachment inside the streamer channel, 
so that conductivity is not constant but attenuates to a 
small value as electrons travel from the head of the 
streamer towards the electrode. For negative streamers, 
the threshold arises as the solution for V(a) disappears 
below certain external field. This may be related to the 
fact that the negative streamer velocity must always ex-
ceed the electron drift speed. The results of threshold 
field calculations using the presented theory are presented 
in Fig. 4. The calculated positive threshold is close to the 
experimental measurements of [6] which are also shown. 
The calculated negative threshold values also agree with 

the commonly accepted experimental value range [1, p. 
362]. 

 

 
 

Fig. 4. Positive and negative streamer threshold fields as a func-
tion of streamer length L.  For the positive threshold, several 
curves are given, corresponding to various values of conductivi-
ty attenuation in the streamer channel due to three-body attach-
ment of electrons. 

Summary 

We present a new method of calculating streamer pa-
rameters, which introduces a streamer “dispersion equa-
tion,” with the “preferred” solution selected by the max-V 
criterion. The terminology draws on the analogy with 
linear perturbation theory, so we may say that we de-
scribe the streamer as a nonlinear instability. The ob-
tained streamer velocities, radii and threshold fields are in 
reasonable agreement with experimental values. The de-
tails of the algebraic equations, as well as the Python 
code for their solution, will be published in [7]. 
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