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PHYSICS AND MATHEMATICS OF ELECTRIC STREAMERS

N.G. Lehtinen∗ UDC 537.5

A streamer is a kind of electric discharge in which there forms a column of ionized matter
growing due to the amplified field at its tip. Streamers in air are an important stage of spark
discharge, in particular lightning, and constitute sprites (mesospheric discharges). Streamers
in large discharges (in sprites, in laboratory experiments with a meter-scale inter-electrode gap
and megavolt potential difference, and in lightning) create large branched structures. Microscopic
processes, which are responsible for propagation of streamers, are ionization, attachment, electron
drift and diffusion, photoionization, and ion processes (detachment, recombination, etc.). Their
numerical modeling reproduces the columnar shape of the ionization front, but does not allow
to identify the physical and mathematical mechanisms of how the streamer radius and speed are
chosen and of branching. A streamer may be described by a finite set of parameters, such as
its speed and the radius of its head. The relations between these parameters are known, but
do not constitute a complete set of equations: one free parameter (the radius) remains, which
defines a streamer “mode” (the terminology is chosen by analogy with small transverse harmonic
perturbations of a flat ionization front). As an additional requirement which would give a unique
solution, we propose the choice of the most unstable mode that has the maximum speed. Thus,
we treat the streamer as a nonlinear instability. This approach yields the results which agree with
experimental measurements of streamer speeds, as well as of the streamer propagation threshold
field.

This article is prepared based on the material of a lecture presented at the XIX Scientific
School “Nonlinear Waves.”

1. INTRODUCTION

Streamers are channels of increased ionization in a gas (or a liquid), that advance by ionizing the
material in front of them with enhanced field at the streamer tip. Streamers play an important role both in
nature and in industry. In nature, they are an important stage of lightning and also constitute Red Sprites
(mesospheric discharges). In industry, they may be used to create suprathermal electrons (i.e., those with
energies exceeding 1 eV). Streamers in air are especially interesting, and are the subject of this work. They
are studied in laboratory discharge experiments with inter-electrode gaps ranging from a few centimeters [1]
to several meters. In large laboratory discharges, with a gap of the order of 1 m and voltage of the order of
1 MV, they form complicated branched structures [2, Fig. 8]. The time development of streamer branching
in Sprites may be observed with high-frame-rate video cameras.

In long sparks (lightning), one can observe a hierarchy of processes, going from simpler at smaller
scales towards larger ones which involve additional physical mechanisms:
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1. Electron avalanche. A Townsend discharge occurs during this process. One may neglect space
charges. Electrons heat up, but transfer their energy to molecules (atoms in inert gases) and ions very
weakly.

2. Streamers. When the avalanche grows to a certain scale, the space charges starts to play an
important role (this is Meek’s criterion) [3]. Electrons are heated (the typical energy is around 3.6 eV), but
the molecules remain cold.

3. Leaders. Similarly to streamers, leaders are channel-shaped discharges. The streamers join
together and create large current. Neutral molecules are heated up, and strong ionization occurs.

Recently, much attention has been paid to the study of the recently discovered X-ray radiation from
electrical discharges. Terrestrial gamma flashes (TGF) were discovered by BATSE instrument at CGRO
[4] and were observed later by other, more sensitive, instruments in orbit, such as RHESSI, Fermi, AGILE,
ASIM (at a rate of the order of 1 flash per day). They are characterized by duration of the order of 0.1 ms,
and total energy greater than or of the order of 1 kJ. They occur simultaneously with lightning and are,
presumably, the result of bremsstrahlung radiation which occurs in relativistic runaway electron avalanches.
The electrostatic potential scale for such avalanches is 7.4 MeV.

X-rays have been observed also in laboratory experiments, both in positive and negative discharges
[5, 6]. Typical photon energies in these reach values of the order of 100 keV. Under these conditions, a
relativistic runaway electron avalanche is impossible (the potential drop is insufficient). It is hypothesized
that radiation occurs in a process of collisions of streamers or leaders of opposite polarity.

2. PROCESSES IN STREAMERS

In air, the basic reactions with participation
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Fig. 1. Most important reactions with participation
of electrons in air.

of electrons include impact ionization of N2 and O2

molecules, with rate νi, and attachment with rate νa; dis-
sociative attachment dominates in strong electric fields (it
is a two-component process, whose rate is proportional
to the atmospheric molecular density Natm), while the
three-component attachment is more important at low
fields (with rate proportional to N2

atm). We will often use
effective ionization rate

νt(E) ≡ νi(E)− νa(E)

These and other processes are described in detail, e.g., in
[7, Ch. 2]. In Fig. 1 we show typical dependencies of νi
and νa on electric field [8].

Intersection field Ek ≈ 3 MV/m, at which νt = νi − νa = 0, is often called critical field and confused
with breakdown field. We must keep in mind the following.

1) In a Townsend discharge, which occurs in steady-state conditions, electron detachment from neg-
ative ions plays an important role. This may make the discharge possible at E < Ek.

2) The minimal field, at which a streamer discharge is possible in a finite gap, is calculated with the
help of Meek’s criterion and may be E > Ek, especially for smaller gaps.

Propagation of a streamer ionization front is made possible by the following mechanisms.

1) Electron drift (forward for a negative streamer) with speed v = −μ(E)E, where μ ≈
0.04–0.05 m2/(V · s) is the electron mobility at typical fields in streamers (with values exceeding 1 MV/m).
We note that at low fields the mobility is higher by an order of magnitude.

2) Electron diffusion (in the absence of photoionization), with coefficient D ≈ 0.1 m2/s.

3) Photoionization (the main mechanism in air). Photons in UV range with wavelengths λ =
980–1025 Å are produced by collisions of electrons with nitrogen N2, then propagate forward of the streamer
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and ionize oxygen O2:

e− +N2 → e− +N∗
2;

N∗
2 → N2 + hν(980–1025 Å);

hν +O2 → O+
2 + e−.

The streamer propagation mechanism was first proposed by the authors of book [3]. The photons
originating in the streamer head are radiated forward of the streamer and produce ionization. The newly
created electrons serve as seeds of ionization avalanches in the high field of the streamer head. These
avalanches are formed as a result of impact ionization, grow in the backward direction and merge with the
streamer. This mechanism works for both positive (cathode-directed) and negative streamers [9, p. 335, 338].
In negative streamers, even though the photon-initiated avalanches grow forward in the laboratory reference
frame, the streamer catches up with them. In the reference frame of the streamer head, the avalanches grow
backwards, similarly to positive streamers.

The streamer parameters, such as its speed and transverse size (radius), can be measured experimen-
tally. One may also use numerical modeling, in which the microscopic physics equations are solved (under
condition that the numerical methods are stable and accurate). Examples of such methods, which use ex-
tensive computational resources, include adaptive mesh refinement (AMR) three-dimensional hydrodynamic
models [10] and particle-in-cell (PIC) methods [11]. However, so far, these computations incur significant
errors (of the order of 10%, judging by examples in [12]), due to numerical inaccuracies and instabilities.
Results related to streamer branching are especially unreliable [13, p. 291]. Moreover, these numerical ex-
periments, even though they may reproduce the laboratory-experiment results, cannot answer the question
about the physical mechanisms which determine the streamer radius and speed.

The question about these mechanisms had been faced by physicists for many years [14]. We can cite
[7, p. 46–47]: “The mechanisms by which a plasma conductor acquires a definite [...] radius [...] seem to go
far beyond the steady state processes [...] We should recognize that these mechanisms are not quite clear at
present.”

The scientists who proposed the streamer mechanism [3] also assumed that the initial streamer ra-
dius is determined by the transverse spreading of electrons in an avalanche as a result of diffusion. This
prompted many authors to explore the idea that electron diffusion determines the streamer radius during its
propagation as well [15, 16, 17]. We may estimate, however, that the increase in the streamer radius due to
diffusion is much slower than that observed in laboratory and numerical experiments. The transverse size
of a flow of directed velocity V diffusing with coefficient D grows as

√
DL/V with distance L. Substituting

the typical values L ≈ 0.1 m, V ≈ 106 m/s, and D ≈ 0.1 m2/s for a laboratory streamer in air, we get a
transverse size increase of less than or of the order of 0.1 mm, while typically observed radii are in excess of
1 mm (see, e.g., [18, 19, 20]). Moreover, it was argued in [21] that diffusion may be completely neglected in
the approximate analysis of regular streamer propagation.

3. PARAMETRIC MODEL OF A STREAMER

Let us write down the hydrodynamic equations for electric discharge in air (see, for example, [8, 22]):

∂n

∂t
= −∇ · (vn) +∇ · (D∇n) + (νi − νa)n+ νdn− − βnn+ + sp;

∂n+

∂t
= νin− (βn + β−n−)n+ + sp;

∂n−
∂t

= νan− νdn− − β−n+n−;

∇ · E =
e

ε0
(n+ − n− n−). (1)
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Fig. 2. Streamer model (I — ideally conducting plane, II — positively charged surface). The field directions
are for a positive streamer (for a negative one they are opposite). Solid and dashed red lines the sketch
E(ξ) dependence for a streamer with finite ionization front thickness d, and infinitely thin front (d = 0),
respectively.

Here n, n+, n− are the number densities of electrons, the positive and negative ions, respectively, νi, νa,
νd, and β, β− are the coefficients determining the rates of ionization, attachment, detachment, electron-ion
recombination and ion-ion recombination, respectively, and sp is photoionization given by Eq. [23]:

sp(r) =

∫
CF (

∣∣r− r′
∣∣)νi(

∣∣E(r′)
∣∣)n(r′) d3r′.

The nonlocality of photoionization is described by the kernel, normalized to unity:

F (r) =
exp(−r/Λ2)− exp(−r/Λ1)

4πr3 log(Λ2/Λ1)
, Λ2 ≈ 2 mm,Λ1 ≈ 35 μm. (2)

Coefficient C characterizes the efficiency of photoionization; C ≈ 0.01 at sea level and depends on the air
density. System (1) was solved numerically in [22].

Further, to simplify the problem, we will keep only processes which are important for the description
of a streamer, and will neglect the following: nonlocal electron transport effects, electron diffusion, ion
motion, electron detachment, recombination, and inter-ion processes. Next, we simplify these equations for
a specific system consisting of an electrode and a discharge, and the shape of the ionization front shown in
Fig. 2. This system is parameterized by a finite, or, at least, a very limited set of parameters compared with
system (1).

In the diagram shown in Fig. 2 the symmetry axis is parallel to the external constant field Ee.
The streamer is attached to the perpendicular ideally conducting electrode. The part of electrode surface
occupied by the streamer absorbs electrons in the positive streamer case and is an ideal electron emitter in
the negative streamer case.1 The streamer of full length L consists of the head (a hemisphere of radius a)
attached to the channel (a cylinder of the same radius). The internal part carries uniform channel field Es,

1 Electrode processes are the subject of future research.
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which is smaller than the external field. The electron number density n is positive inside the streamer and
falls off to n = 0 outside, and at the forward boundary of the streamer this drop is steep, with the scale of
front thickness d � a. We assume that n is uniform inside the channel along its axis and denote it as ns

(but n may gradually fall off towards the side walls). The assumption of uniformity of Es and ns, probably,
contributes the biggest part to the error in the described model, which may be of the order of a few tens of
percent, because n drops inside the channel due to electron attachment, which is neglected in the model.

The streamer grows (propagates) along x-axis with velocity V ≡ dL/dt. We assume that the head
is in a steady state in its own reference frame, which allows us to write equations in terms of co-moving
coordinate ξ = x − V t. It is convenient to take as the origin of ξ any point within the front boundary of
the streamer, as is shown in Fig. 2. The streamer propagates by ionizing air in front of itself with a high
electric field with maximal value Em (the field is shown schematically by a solid red line in Fig. 2).

Beside Em, it is useful to introduce another field Ef , which is the field that the streamer would create
in the case of an infinitely thin ionization front (d = 0), but with the same surface charge density at the
streamer boundary (the distribution of such a field is shown by a dashed red line in Fig. 2). Modeling
shows that Em/Ef ≈ 0.7–0.85. Approximately the same field Ef would be obtained in the case of a flat
ionization front, considered in Sec. 4.3. In order to find relations between streamer parameters and to
perform subsequent practical calculations, it is more convenient to choose Ef as one of the independent
parameters instead of Em and to calculate Em afterwards on the basis of known Ef and thickness d.

Thus, we have chosen several parameters (a, V , Es, Ef and ns), which fully (even though approxi-
mately) describe our system. We emphasize that Ee and L are the given external values: Ee is determined
by the laboratory conditions and L =

∫
V dt, by the streamer propagation history. In the next section, we

will write down equations which relate these parameters to each other.

We should mention that this is not the first attempt of a similar streamer description. A parametric
model was considered, e.g., by [24]. However, because the equation are rather complicated, in such models
it is hard to notice internal inconsistencies (overdefined system of equation) or insufficiency of the system
(dependent equations).

4. SYSTEM OF ALGEBRAIC EQUATIONS

We have identified the following relationships between the parameters:

1) Electrostatic relationship between fields Es Ee, Ef (Em), which can be calculated by the method
of moments if we assume that all the charges are approximately concentrated on the streamer surface (i.e.,
we neglect the thickness d).

2) Continuity of the total current at the tip of the streamer: the conductivity current in the channel
becomes the displacement current outside the streamer.

3) The balance of ionization time and the relaxation time in the channel.

4) The balance between the processes of impact and photo ionization [25].

Let us consider each of them in detail.

4.1. Equation 1: Fields

The external uniform constant field Ee is fixed by the laboratory conditions. Inside the channel, the
conductivity is high, and there is a field Es, such that 0 < Es < Ee. The field at the front boundary can be
estimated by the reasoning given in [7, p. 78]: the potential at the streamer tip differs from the undisturbed
one by ΔU = L(Ee − Es), and the field is approximately Ef = ΔU/a. The field Ef can be calculated more
accurately by utilizing the method of moments [26, Ch. 2].

The field in front of the streamer falls off approximately as

E(ξ) = Ee +
Ef − Ee

1 + ξ/	
, d � ξ < a, (3)
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where 	 ≈ (0.3–0.4)a is the field width [21]. In Sec. 4.6, we give the approximate formula for 	, fitted from
the method-of-moment results.

4.2. Equation 2: Current continuity

There is a conductivity current flowing along the streamer channel with density Jc = ensμ(Es)Es.
The electron number density falls off steeply (with the scale of the front thickness d � a) to zero at the front
boundary of the streamer. The density of full current J = Jc+Jd, consisting of conductivity current Jc and
displacement current Jd = ε0∂E/∂t, must remain approximately constant (∇·J = 0 fromMaxwell equations,
ε0 is the dielectric constant). By using the property of the co-moving coordinate ∂E/∂t = −V ∂/∂ξ and the
expression for the field (3), we find

Jd(ξ) =
ε0V (Ef − Ee)

	(1 + ξ/	)2
.

At small ξ ∼ d, neglecting d � 	 and equating this expression to the conductivity current density in the
channel, we get the equation for the current continuity [27].

The total current J is approximately equal to Jd at ξ > 0 and Jc = Jd(0) at ξ < 0.
Let us note that Jd falls off as the inverse square of the distance. Physically, this may be interpreted

as isotropic divergence of the displacement current away from the streamer tip. The integrated diverging
displacement current must be equal to the total current in the streamer channel. Also it is worth noting that
inside the ionization front (at the tip) conductivity and displacement current densities vary significantly, so
that each of them exceeds the total current density (their sum).

4.3. Equation 3: Ionization front

Hydrodynamic equations (1) can be rewritten as

ε0∂tE = evn + J, ∂tn+∇ · (vn) = νtn+ sp. (4)

Herewith, ∂α ≡ ∂/∂α. Neglecting photoionization sp, for a flat steady-state front advancing with speed
V > 0 we get one-dimensional equations (∂/∂y, ∂/∂z ≡ 0)

−ε0V ∂ξE = −evn, −∂ξ([V ± v]n) = νtn,

where v = |vx| = ∓vx > 0 (the upper sign for the positive and the lower for the negative front). The current
J = const = 0, because it is absent far ahead of the front (ξ → +∞), where the field is constant and is
equal to the external field Ef = E(ξ → +∞). From J = 0 it follows also that E = 0 at ξ → −∞. This is
different from a streamer, in which J > 0 and E(−∞) = Es > 0. Divide the second equation by the first:

e

ε0

d

dE

[
(V ± v)n

V

]
=

νt
v

≡ αt(E).

Upon integration, we get
en(E)

ε0
=

V

V ± v

∫ Ef

E
αt(E) dE. (5)

Here, αt is the effective Townsend coefficient. The Maxwellian relaxation rate far behind the front (where
E = 0) is

τ−1
M =

σs
ε0

=
ensμ0

ε0
= μ0

∫ Ef

0

νt(E)

μE
dE ∼ νt(Ef),

where μ0 = μ(E = 0) and ns = n(E = 0) is the electron number density far behind the front, at ξ → −∞.
The last expression describes an approximate balance of the time scales of ionization and relaxation, which
may be interpreted as the criterion of propagation stability of a front or a streamer [28].
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Fig. 3. Solution n(ξ), E(ξ) for a flat ionization
front, for the case νt(E) = KE,μ = 0.

equations, we may find the spatial dependence n(ξ), E(ξ).
As an example, take νt(E) = KE, v = 0. Then the front
has the shape of a sigmoid (logistic) curve, with width
d = V/νt(Ef), shown in Fig. 3, i.e., n(ξ) = ns[1 − S(ξ)],
E(ξ) = EfS(ξ), where

S(ξ) =
1

1 + exp(−ξ/d)
. (6)

The speed V of the flat front can be found from the boundary conditions at ξ → ∞ (ahead of the
front), for different mechanisms of its propagation. The possible values of V satisfy inequality V > V0,
where V0 is defined by one of the following formulas.

1) When μ > 0 and D > 0,
V0 = ∓μ(Ef)Ef +

√
2Dνt(Ef)

(Kolmogorov-Petrovskii-Piskunov formula [29, p. 77]).

2) In the presence of photoionization, but with D = 0 [29, Eq. (3.1.85)]:

V0 = ∓μ(Ef)Ef + νt(Ef)Λmax

Here and below the upper (lower) sign is for a positive (negative) ionization front. Unfortunately,
these expressions are only valid for a flat front and cannot be applied to streamers. Also, we will show that
streamer V has only a single valid value, in contrast to the inequality above.

The expressions derived in the flat ionization front theory can be found in an excellent detailed review
[29].

4.4. Equation 4: Photoionization balance

Let us consider the balance between two processes: photoionization (caused by photons radiated
forward) and impact ionization (caused by backward avalanches).

The photon source is the streamer front near the tip, where ionization is actively produced. We
assume that this active region has approximately the spatial shape of a disk with radius aph ∼ a. For
calculations in this paper, we took aph = a/2, but the results change little if one takes, for example, aph = a.
The number of photons is proportional to the number of electrons created in the process of ionization, i.e.,
the number density of electrons in the streamer channel ns. The photons fly forward and create seeds for
avalanches at a distance ξp ∼ aph ahead of the front with number density np.

2

The resulting avalanches grow exponentially in the backward direction, towards the streamer. The
growth rate, however, is not the usual Townsend coefficient αt = νt/v, but a “Doppler-shifted” coefficient
αeff = νt/(V ± v). The inverse of αeff is the front thickness d = (V ± v)/νt. We emphasize that, since
streamer speed V exceeds the electron drift speed v, the sign of d is always positive not only for positive
streamers (upper sign), but also for negative streamers (lower sign). This also means that the avalanches
always grow backward towards the streamer in the reference frame associated with its head.

Loeb [30] was the first to obtain the formula relating streamer speed to its radius: from the exponential
growth we have log(ns/np) = αeffa, hence

V ± v =
aνt(Ef)

log(ns/np)
.

2 The photons, of course, are flying in all directions, but the region we consider here is most important, because it has a
high electric field and there were no free electrons there before the photon arrival.
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The still unknown value of log(ns/np) can be taken to be approximately 8 [21]. By solving strictly
the second equation of system (4), one may obtain a more accurate expression [25], which is given in Sec. 4.6
(however, in a slightly different form, since we assumed the photon source to have a disk shape). From this
equation one can also estimate, in particular, the distance ξp to the region important for photoionization.

4.5. Discussion of approximations used

4.5.1. Streamer shape

We assumed that the streamer channel radius is constant along its length and is equal to the head radius.
However, the streamer channel radius may be different from the curvature radius of the head. For example,
the hydrodynamic calculations [31] showed that it is greater by a factor of two in positive and by a factor of
three or more in negative streamers. If Es = const, then variations of the channel radius far from the head
will not strongly affect the field ahead of the streamer, E(ξ > 0), because it is formed mostly by surface
charges near the tip. Thus, parameter a entering our equations best describes the curvature radius of the
head than, e.g., the maximum radius of the channel.

4.5.2. Non-uniformity of ns and Es along the channel

In expression (3) we assumed that the field inside the channel Es = const. The current continuity along
the channel requires that nsv(Es) = const, which means that Es = const necessarily implies ns = const.
The assumption of uniformity of Es and ns along the channel, however, will be invalid if we take into
account the processes of attachment and recombination in the channel (we touch upon this topic in Sec.7̃).
However, even when we neglect these processes, ns may be non-uniform due to the history of the streamer
development: different parts of the streamer were created at different conditions (namely, streamer lengths)
and, therefore, may have different local values ns.

3 Peeking ahead, we see in Fig. 5e and 6e that ns can vary
significantly as the streamer grows. We make an error by substituting non-uniform value ns in the channel
with its value from the last added part of the streamer. This error may be of the order of a few tens of
percent and is possibly the biggest contribution to the total error in the presented calculations.

4.5.3. Head curvature and finite current J 
= 0 through the front

Expression (5), relating electron number density in the ionization front with the field ahead of the streamer,
will change when we substitute expression for J found in Sec. 4.2 into Eq. (4). Solution of the obtained
equation is beyond the scope of the present work and deserves a separate discussion. In particular, we are
going to obtain an expression for the field different from (3) inside the front, at |ξ| � d (represented by a
solid red line in Fig. 2). If the gradual transition from field E(ξ) = Es at ξ � −d to expression (3) at ξ � d
is approximately described by the sigmoid (logistic) curve (6), then the maximum field Em is equal to

Em = Ef

[
1− d

	
log

(
	

d

)]

It is less than Ef and is achieved at ξ = ξm = d log(	/d). One must do additional calculations in order
to estimate the relative error in the expression for ns. Unlike E(−∞) = 0 for the flat front, we have
E(ξ � −d) = Es > 0, which, at least, gives a different lower integration limit in expression (5). Thus,
expression (5) is approximate, but remains accurate up to the order of magnitude.

4.6. System of algebraic equations for a, V , Es, Ef , and ns

In this Section we compiled all the equations for the reader’s convenience.

3 We can neglect electron drift inside the channel compared to the streamer speed, v(Es) � V .
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1) Relation between electric fields, given by electrostatic distribution of charges on the streamer
surface (analytical approximation of the results of method-of-moments calculations) [7, p. 78] (connection
between Es and Ef):

E(ξ) ≈ [
2 + 0.56(2L/a)0.92

] Ee −Es

1 + ξ/	
+ Ee, Ef = E(0),

	

a
≈ 0.40 − 0.59

(L/a) + 2.31
,

where 	 is the width of the electric field [21].

2) Continuity of the full electric current through the streamer front [27] (connection between Es, ns

and V ):

Jc = ε0
∂E

∂t

∣
∣∣
∣
ξ=0

=⇒ ensv(Es) =
ε0V (Ef − Ee)

	
,

where v is the electron drift speed.

3) Criterion of streamer propagation stability, obtained from the theory of the flat ionization front
[29, Ch. 3] (connection between ns and Ef):

ns =
ε0
e

∫ Ef

0

νt(E
′)

v(E′)
dE′,

where νt is the effective ionization rate. This relation is approximately equivalent to τM ∼ τion = 1/νt(Ef).

4) Connection between the speed and the radius, determined by photoionization [25, Eq. 17] (con-
nection between V , Ef and a):

∫ ∞

0
Sph(ξ) exp

[∫ ξ

0

νt(E) dξ′

V ± v(E)

]
dξ = 1,

Sph is the source of photoionization electrons per unit ns, created by the processes occurring in the front of
radius aph = a/2:

Sph(ξ) =

∫

r⊥<aph

CF (r) d2r⊥, r =
√

ξ2 + r2⊥

where F (r) is given by Eq. (2).

5. DISPERSION FUNCTION

After a careful look at the obtained system of algebraic equations we notice that, at fixed external
conditions Ee and L, it does not have a single-valued solution, because the number of equations is less by
one than the number of unknown parameters. Thus, there remains one free parameter, which we can choose
to be, e.g., the radius a. Then we obtain solutions V = V (a), Es = Es(a), and so on.

Let us draw an analogy with another problem, which has a similar goal: finding small perturbations of
a flat ionization front. This problem was tackled in detail by [32] (however, only electron drift and diffusion
were taken into account, but not photoionization). It was found that in the linear approximation there is
an instability: small perturbations, proportional to cos(ky), grow as exp(st) with growth rate s, which is a
function of the transverse wave number k. Function s(k) is called the dispersion function. When we solve
the problem of growth of small perturbations, it is obvious that k is a free parameter. This explains the
fact that in our problem which concerns a long streamer, even though it is nonlinear, the transverse size a
also turned out to be the free parameter. The set of various parameters of a small harmonic perturbation
(e.g., the change in the field at the protrusions in proportion to the amplitude, etc.) may be called a
“mode” (analogously to an electromagnetic mode in a waveguide). We may also call the set of parameters
{V (a), Es(a), . . . } at fixed radius a a streamer mode.

Evolution of small perturbations of a flat front depends on the initial conditions. If in the beginning
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there is a combination of perturbations with various k, then the perturbation which corresponds to the
maximum of the dispersion function s(k) grows the fastest and in the long term only it will “survive,” i.e.,
after some time we will see only the perturbation proportional to cos(k∗y), where maxk s(k) = s(k∗). This
solution (and the scale k∗) is preferred as the most unstable. We may assume that, also in our case, there
is a preferred most unstable solution which determines the real streamer radius, as well as all of its other
parameters. Identification of such a solution is complicated by the fact that our problem is nonlinear and
the growth rate s(k) does not exist. The following reasoning will help find the fitting analogy.

In the linear harmonic perturbations of a flat front, the protrusion size L (we use this notation because
the protrusion size is analogous to the streamer length in our problem) grows as L = L0 exp[s(k)t], and the
speed of the protrusions (in respect to the speed of the overall front) V = dL/dt = s(k)L. Thus, the speed
plays the same role as s(k) at fixed L, and we may call the found dependence V (a) the dispersion function
of the streamer. The most unstable (preferred) solution corresponds to a = a∗, where maxa V (a) = V (a∗).
This solution is the preferred mode which determines the real streamer parameters which are obtained in
laboratory and numerical experiments.

Our assumption that the mode with maximalV, Mm/s

2.0

1.5

1.0

0.5

0.0 10 20 30 40 a, mm

Fig. 4. An example of calculated dispersion func-
tions V (a) for streamers in dry air at sea level for
the external field Ee = 1.5 MV/m and streamer
length L = 80 mm. Positive streamers (red curve)
have a single solution for all a, while negative (blue
curve) have zero or two solutions. The large dot
denotes the maximum V .

speed determines the parameters of a streamer observed
in nature is heuristic, and we cannot yet find its strict
mathematical justification, because the modes under con-
sideration are nonlinear and do not allow a mode com-
bination, which was possible in the linear problem con-
cerning small perturbations of a flat front. Let us note
that [33, Fig. 1] also suggested (at a heuristic level) that
when the streamer changes its radius to the value best
corresponding to the physical conditions, the speed may
increase. However, the authors of that work did not use
the maximization of speed for a numerical solution.

Selection of the preferred radius by the maximiza-
tion of velocity can be used in one-dimensional streamer
models, such as the one suggested by [34]. Those authors
used the constant-radius assumption and noted that the
modeling results strongly depended on the choice. The
algorithm that we suggest will allow to choose a more
physical, i.e., non-constant, radius value.

An example of calculated dispersion functions for streamers of both polarities is shown in Fig. 4. The
large dot denotes the preferred mode, i.e., the real streamer speeds and radii.

6. CALCULATION RESULTS

The calculations were performed for streamers in dry air at sea level. Expressions for electron
mobility and ionization and attachment rates were taken from [8, 35]. Calculations were performed for
streamer lengths in interval L = 5–200 mm with step 5 mm and external fields in interval Ee = 0.1–3 MV/m
with step 0.05 MV/m. Usually, the calculated dispersion function had one branch for positive streamers and
two branches for negative ones, as is shown in Fig. 4. The top branch V (a) always had one local maximum,
while all the other calculated parameters (Es, Em, ns) were monotonic functions of a. The results presented
below correspond to the maximum of V (a), i.e., to the most unstable solution (the preferred mode).

The positive streamer results are presented in Fig. 5. The speed is shown in comparison with labo-
ratory measurements [1], which were performed under conditions very similar to those in our model (i.e.,
with an approximately constant and uniform field). A convenient unit for measuring streamer speed is
1 Mm/s= 106 m/s=1 mm/ns. We also get good agreement (within 30%) with the numerical experiment
[12] in which hydrodynamic equations were solved (these results are not presented here).
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Fig. 5. Results for positive streamers as functions of external field Ee, for three different values of L = 40 mm
(curves 1); 120 mm (2), and 200 mm (3): velocity V (a), radius a (b), field inside the streamer Es (c),
maximum field Em (d), electron number density inside the channel ns (e), front thickness d as a fraction of
radius a in percent (f ). Results of laboratory measurements [1, Fig. 10] at L = 120 mm are also shown (a,
curve 4).

The negative streamer results are presented in Fig. 6. Some plots have a completely different shape
than in the positive streamer case. In particular, the solution starts only from finite Ee (for fixed L).

7. THRESHOLD FIELDS

Attachment and recombination in the streamer channel decrease its conductivity, which causes elec-
trical detachment of the streamer from the electrode, i.e., the breaking of the electrical circuit. The current
through the streamer stops, and, presumably, the streamer also stops. Thus, this mechanism determines
the threshold field for positive streamers.
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Fig. 6. Results for negative streamers as functions of external field Ee, for three different values of L = 40 mm
(curves 1); 120 mm (2), and 200 mm (3): velocity V (a), radius a (b), field inside the streamer Es (c),
maximum field Em (d), electron number density inside the channel ns (e), front thickness d as a fraction of
radius a in percent (f ).

It should be noted that it had been hypothesized that a streamer may exist separately from an
electrode. For example, [36, Fig. 22b] describes a unipolar streamer soliton with a “compensation zone”
behind the streamer, in which both conductivity and charge per unit length gradually fall off to zero.

The field inside the channel is much lower than the intersection field Ek. In such a field, the main role
is played by the three-component attachment (for computations taken from [8]). The electron number density
drops by factor K = e−L/Latt , where the characteristic scale along the channel, at which the attachment
occurs, is

Latt =
V ± v(Es)

νa(Es)− νi(Es)
.
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Fig. 7. Threshold fields E+t and E−t for positive and
negative streamers as functions of length L. Experi-
mental data (black curve) are taken from [1, Fig. 4].

plotted in Fig. 7, for a range of streamer lengths.
For comparison, we plotted the experimental data for
threshold field E+t, obtained in [1]. The electron num-
ber density drop which corresponds best to the exper-
imental data is rather strong, K ≈ 10−5. It is possible
that detachment, which we neglected, reduces the role
of attachment, and slows down the drop in the electron
number density.

The mechanism of threshold field for negative
streamers is completely different. As we saw in Fig. 6,
the solution disappears at low values of external field
Ee. Values of E−t at which this occurs are also plotted
in Fig. 7, and agree with experimental values E−t =
0.75–1.25 MV/m [9, p. 362].

8. CONCLUSIONS

We have shown the following.

1) A streamer discharge in field Ee of length L can be described by a system of algebraic equations,
solving which one obtains “modes” at different radii a.

2) By maximizing the speed of the streamer front V , one obtains the preferred solution, which is
realized physically.

3) The calculated streamer parameters agree with experimental results and hydrodynamic models.

4) Threshold fields are functions of streamer length L, and their physical causes are different for
positive and negative streamers. The negative streamer threshold is compatible with the experimental values
E−t ≈ 0.75–1.25 MV/m [9, p. 362], while the positive streamer threshold in our model is compatible with
the experimental value E+t ≈ 0.45 MV/m only if one assumes an underestimated value of the attachment
coefficient.

This study was supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013)/ERC grant agreement No. 320839 and the Research Council of
Norway under contracts 208028/F50, 216872/F50 and 223252/F50 (CoE).

APPENDIX

The Python3 code which may be used to reproduce the calculations described here, and instruc-
tions for its use, are available at https://gitlab.com/nleht/streamer parameters. An example of sys-
tem 1 solution in [22], with a collision of streamers of opposite polarities, is available as a video at
https://www.youtube.com/watch?v=xbaDeLYERkQ .
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