What determines streamer speed and radius?

Nikolai G. Lehtinen

Birkeland Center for Space Science
University of Bergen, Norway

June 18, 2019
Introduction

Streamer mechanism

Model

Goal and approach
Reduced system of equations
Analogy with flat-front theory

Results

Positive streamers
Negative streamers
Threshold fields

Conclusions
What is a streamer?

Electric streamer discharges are ionized columns in gas (or liquid) which advance by ionizing the material in front of them with the enhanced field at the streamer tip.

Shown here is a laboratory ~MV, 1 m gap discharge, with a complicated branched streamer tree.

Applications:

1. Lightning, sprites
2. Industry (suprathermal electrons)

[Kochkin et al., 2014, Fig. 8]
What is a streamer?

Electric streamer discharges are ionized columns in gas (or liquid) which advance by ionizing the material in front of them with the enhanced field at the streamer tip.

Shown here is a laboratory ∼MV, 1 m gap discharge, with a complicated branched streamer tree.

Applications:
1. Lightning, sprites
2. Industry (suprathermal electrons)
What is a streamer?

Electric streamer discharges are ionized columns in gas (or liquid) which advance by ionizing the material in front of them with the enhanced field at the streamer tip.

Shown here is a laboratory \simMV, 1 m gap discharge, with a complicated branched streamer tree.

Applications:

1. Lightning, sprites
2. Industry (suprathermal electrons)
What is a streamer?

Electric streamer discharges are ionized columns in gas (or liquid) which advance by ionizing the material in front of them with the enhanced field at the streamer tip.

Shown here is a laboratory ~MV, 1 m gap discharge, with a complicated branched streamer tree.

Applications:

1. Lightning, sprites
2. Industry (suprathermal electrons)
Electric streamer discharges are ionized columns in gas (or liquid) which advance by ionizing the material in front of them with the enhanced field at the streamer tip.

Shown here is a laboratory ~MV, 1 m gap discharge, with a complicated branched streamer tree.

Applications:

1. Lightning, sprites
2. Industry (suprathermal electrons)
Streamer mechanism
[Loeb and Meek, 1941]

Photons produced in the head of the streamer travel ahead, produce ion-electron pairs, and the electrons serve as avalanche seed in high electric field at streamer head.

Figure: Positive streamer [figure from Raizer, 1991, p. 335]
Streamer mechanism (negative streamer)

The avalanches started by photoelectrons are directed outward, but the streamer moves so fast that it catches up with them.

Figure: Negative streamer [figure from Raizer, 1991, p. 338]
Outline

Introduction
 Streamer mechanism

Model
 Goal and approach
 Reduced system of equations
 Analogy with flat-front theory

Results
 Positive streamers
 Negative streamers
 Threshold fields

Conclusions
Goal and approach

Goal
Understand the streamer basics and answer the question in the title of this talk

Approach
- look for a solution in a shape of a streamer;
- simplify microscopic physics PDEs which describe evolution of fields and particles and obtain a finite system of algebraic equations for a finite number of streamer parameters, such as radius, speed etc.;
- solve this system.
Goal and approach

Goal
Understand the streamer basics and answer the question in the title of this talk

Approach
- look for a solution in a shape of a streamer;
- simplify microscopic physics PDEs which describe evolution of fields and particles and obtain a finite system of algebraic equations for a finite number of streamer parameters, such as radius, speed etc.;
- solve this system.
Goal and approach

Goal
Understand the streamer basics and answer the question in the title of this talk

Approach
- look for a solution in a shape of a streamer;
- simplify microscopic physics PDEs which describe evolution of fields and particles and obtain a finite system of algebraic equations for a finite number of streamer parameters, such as radius, speed etc.;
- solve this system.
Goal
Understand the streamer basics and answer the question in the title of this talk

Approach
- look for a solution in a shape of a streamer;
- simplify microscopic physics PDEs which describe evolution of fields and particles and obtain a finite system of algebraic equations for a finite number of streamer parameters, such as radius, speed etc.;
- solve this system.
Streamer is a cylinder (channel) with a hemispherical cap (head).

- External electric field E_e and length L are given.
- Want to find parameters: radius a, velocity V, etc.
Streamer is a cylinder (channel) with a hemispherical cap (head).

- External electric field E_e and length L are given.
- Want to find parameters: radius a, velocity V, etc.
Streamer shape

- Streamer is a cylinder (channel) with a hemispherical cap (head).
- External electric field E_e and length L are given.
- Want to find parameters: radius a, velocity V, etc.
System of algebraic equations

1. Relation between E fields, from electrostatic distribution of surface charge.
2. Continuity of total (conductivity + displacement) current through the streamer front.
3. Propagation stability criterion $\tau_M \sim \tau_{\text{ion}}$, connecting ionization with the maximum field.
4. Velocity-radius relation, from the photoionization mechanism [Pancheshnyi et al., 2001].

Problem: these equations do not give a unique solution! There is still one free parameter.
I.e., we get something like $\mathcal{F}(V, a) = 0$, while all other parameters may be expressed in terms of V and a.

Before giving up, let us look at another approach of reducing a system of PDEs to simpler equations: the flat front perturbation theory.
System of algebraic equations

1. Relation between E fields, from electrostatic distribution of surface charge.
2. Continuity of total (conductivity + displacement) current through the streamer front.
3. Propagation stability criterion $\tau_M \sim \tau_{\text{ion}}$, connecting ionization with the maximum field.
4. Velocity-radius relation, from the photoionization mechanism [Pancheshnyi et al., 2001].

Problem: these equations do not give a unique solution! There is still one free parameter. I.e., we get something like $\mathcal{F}(V, a) = 0$, while all other parameters may be expressed in terms of V and a.

Before giving up, let us look at another approach of reducing a system of PDEs to simpler equations: the flat front perturbation theory.
System of equations

System of algebraic equations

1. Relation between E fields, from electrostatic distribution of surface charge.
2. Continuity of total (conductivity + displacement) current through the streamer front.
3. Propagation stability criterion $\tau_M \sim \tau_{\text{ion}}$, connecting ionization with the maximum field.
4. Velocity-radius relation, from the photoionization mechanism [Pancheshnyi et al., 2001].

Problem: these equations do not give a unique solution! There is still one free parameter. I.e., we get something like $F(V, a) = 0$, while all other parameters may be expressed in terms of V and a.

Before giving up, let us look at another approach of reducing a system of PDEs to simpler equations: the flat front perturbation theory
Small flat-front perturbations: linear instability

- Start with a flat ionization front propagating as a whole to the right in the Figure.
- Small harmonic $\sim \cos ky$ perturbations grow as e^{st} with growth rate s.
- Nonlinear stage.
Small flat-front perturbations: **linear instability**

- Start with a flat ionization front propagating as a whole to the right in the Figure.
- Small harmonic $\sim \cos ky$ perturbations grow as e^{st} with **growth rate** s.
- Nonlinear stage.
Small flat-front perturbations: **linear instability**

- Start with a flat ionization front propagating as a whole to the right in the Figure.
- Small harmonic $\sim \cos ky$ perturbations grow as e^{st} with growth rate s.
- Nonlinear stage.
The growth rate as a function of transverse wavenumber $s(k)$ is called dispersion function.

- k is a free parameter, evolution depends on initial conditions;
- Perturbation at maximum $s(k)$ grows fastest, so $1/k$ is the preferred transverse size a.
Solution by Derks et al. [2008]

The growth rate as a function of transverse wavenumber $s(k)$ is called dispersion function.

- k is a free parameter, evolution depends on initial conditions;
- Perturbation at maximum $s(k)$ grows fastest, so $1/k$ is the preferred transverse size a.
The growth rate as a function of transverse wavenumber \(s(k) \) is called dispersion function.

- \(k \) is a free parameter, evolution depends on initial conditions;
- Perturbation at maximum \(s(k) \) grows fastest, so \(1/k \) is the preferred transverse size \(a \).
The growth rate as a function of transverse wavenumber $s(k)$ is called \textit{dispersion function}.

- k is a \textbf{free parameter}, evolution depends on initial conditions;
- Perturbation at maximum $s(k)$ grows fastest, so $1/k$ is the \textbf{preferred transverse size} a.
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- Shape: harmonic
- k is a free parameter
- Velocity of protrusion $V = V_0 + s(k)L$

Our system

- Shape: streamer
- Not enough equations to fix $a \sim 1/k$
- No $s(k)$, but velocity $V(a, L, E_e)$

"Real" solution: $\max_k s(k) \Leftrightarrow \max_k V$

Is physical solution also at $\max_a V$?

max-V criterion

Radius a cannot be determined from equations, but may be fixed by maximizing velocity V.
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- Shape: harmonic
- k is a free parameter
- Velocity of protrusion $V = V_0 + s(k)L$

- “Real” solution: $\max_k s(k) \Leftrightarrow \max_k V$

Our system

- Shape: streamer
- Not enough equations to fix $a \sim 1/k$
- No $s(k)$, but velocity $V(a, L, E_e)$

- Is physical solution also at $\max_a V$?

max-V criterion

Radius a cannot be determined from equations, but may be fixed by maximizing velocity V.

$E_e = 1.5 \text{ MV/m, } L = 80 \text{ mm}$
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- **Shape:** harmonic
 - k is a free parameter
 - Velocity of protrusion $V = V_0 + s(k)L$

- **“Real” solution:** $\max_k s(k) \leftrightarrow \max_k V$

- Is physical solution also at $\max_a V$?

Our system

- **Shape:** streamer
 - Not enough equations to fix $a \sim 1/k$
 - No $s(k)$, but velocity $V(a, L, E_e)$

Radius a cannot be determined from equations, but may be fixed by maximizing velocity V.

$max-V$ criterion
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- Shape: harmonic
- k is a free parameter
- Velocity of protrusion $V = V_0 + s(k)L$

Our system

- Shape: streamer
- Not enough equations to fix $a \sim 1/k$
- No $s(k)$, but velocity $V(a, L, E_e)$

"Real" solution: $\max_k s(k) \Leftrightarrow \max_k V$

max-V criterion

Radius a cannot be determined from equations, but may be fixed by maximizing velocity V.

Is physical solution also at $\max_a V$?
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- Shape: harmonic
- \(k \) is a free parameter
- Velocity of protrusion \(V = V_0 + s(k)L \)

Our system

- Shape: streamer
- Not enough equations to fix \(a \sim 1/k \)
- No \(s(k) \), but velocity \(V(a, L, E_e) \)

"Real" solution: \(\max_k s(k) \Leftrightarrow \max_k V \)

Is physical solution also at \(\max_a V \)?

max-\(V \) criterion

Radius \(a \) cannot be determined from equations, but may be fixed by maximizing velocity \(V \).
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- Shape: harmonic
- k is a free parameter
- Velocity of protrusion $V = V_0 + s(k)L$

Our system

- Shape: streamer
- Not enough equations to fix $a \sim 1/k$
- No $s(k)$, but velocity $V(a, L, E_e)$

“Real” solution: $\max_k s(k) \iff \max_k V$

max-V criterion

Radius a cannot be determined from equations, but may be fixed by maximizing velocity V.

Is physical solution also at $\max_a V$?
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- Shape: harmonic
- \(k \) is a free parameter
- Velocity of protrusion \(V = V_0 + s(k)L \)

Our system

- Shape: streamer
- Not enough equations to fix \(a \sim 1/k \)
- No \(s(k) \), but velocity \(V(a, L, E_e) \)

"Real" solution: \(\max_k s(k) \Leftrightarrow \max_k V \)

Is physical solution also at \(\max_a V \)?

max-\(V \) criterion

Radius \(a \) cannot be determined from equations, but may be fixed by maximizing velocity \(V \).
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- Shape: harmonic
- k is a free parameter
- Velocity of protrusion $V = V_0 + s(k)L$

Our system

- Shape: streamer
- Not enough equations to fix $a \sim 1/k$
- No $s(k)$, but velocity $V(a, L, E_e)$

![Graph showing $s(k)$ vs k for different E_e values and a graph showing V vs a for positive and negative E_e.]

- “Real” solution: $\max_k s(k) \Leftrightarrow \max_k V$

max-V criterion

Radius a cannot be determined from equations, but may be fixed by maximizing velocity V. Is physical solution also at $\max_a V$?
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- Shape: harmonic
- k is a free parameter
- Velocity of protrusion $V = V_0 + s(k)L$

- "Real" solution: $\max_k s(k) \Leftrightarrow \max_k V$

Our system

- Shape: streamer
- Not enough equations to fix $a \sim 1/k$
- No $s(k)$, but velocity $V(a, L, E_e)$

- Is physical solution also at $\max_a V$?

max-V criterion

Radius a cannot be determined from equations, but may be fixed by maximizing velocity V.

$E_e = 1.5$ MV/m, $L = 80$ mm

V, Mm/s

$E_e = 1.5$ MV/m, $L = 80$ mm

V, Mm/s
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]
- Shape: harmonic
- k is a free parameter
- Velocity of protrusion $V = V_0 + s(k)L$

Our system
- Shape: streamer
- Not enough equations to fix $a \sim 1/k$
- No $s(k)$, but velocity $V(a, L, E_e)$

“Real” solution: $\max_k s(k) \Leftrightarrow \max_k V$

Is physical solution also at $\max_a V$?

max-V criterion
Radius a cannot be determined from equations, but may be fixed by maximizing velocity V.
Analogy of our system with flat-front theory

Flat-front theory [Derks et al., 2008]

- Shape: harmonic
- k is a free parameter
- Velocity of protrusion $V = V_0 + s(k)L$

![Graph showing $s(k)$ vs. k for different E values.]

- "Real" solution: $\max_k s(k) \iff \max_k V$

Our system

- Shape: streamer
- Not enough equations to fix $a \sim 1/k$
- No $s(k)$, but velocity $V(a, L, E_e)$

![Graph showing V vs. a for different E_e values.]

- Is physical solution also at $\max_a V$?

max-V criterion

Radius a cannot be determined from equations, but may be fixed by maximizing velocity V.
Outline

Introduction
Streamer mechanism

Model
Goal and approach
Reduced system of equations
Analogy with flat-front theory

Results
Positive streamers
Negative streamers
Threshold fields

Conclusions
Dispersion functions $V(a)$ for positive streamers with $L = 120$ mm and several values of E_e.

Dots denote the max-V.
Positive streamers

The following results are after application of $\max-V$. We compare to experimental results of Allen and Mikropoulos [1999].

Figure: Velocity and radius as a function of external field E_e, for three different values of L.
Negative streamers

Below certain field E_e, there is no solution. Physically, the reason may be that the negative streamer must travel faster than electron drift speed.

Figure: Velocity and radius as a function of external field E_e, for three different values of L.

Results Negative streamers

16 / 21
Below certain field E_e, there is no solution. Physically, the reason may be that the negative streamer must travel faster than electron drift speed.
Threshold field $E_{\pm t}$ is the minimum E_e at which propagation is still possible. It depends on L and the physical reason is different for different polarities:

- **Positive streamers**: Three-body attachment inside the streamer quenches it.
- **Negative streamers**: Velocity drops below electron drift speed.
Streamers threshold fields

Threshold field $E_{\pm t}$ is the minimum E_e at which propagation is still possible. It depends on L and the physical reason is different for different polarities:

- **Positive streamers**: Three-body attachment inside the streamer quenches it.
- **Negative streamers**: Velocity drops below electron drift speed.

![Graph showing different threshold fields $E_{\pm t}$ for various attenuation values and experimental data.](image-url)
Streamer threshold fields

Threshold field $E_{\pm t}$ is the minimum E_e at which propagation is still possible. It depends on L and the physical reason is different for different polarities:

- **Positive streamers**: Three-body attachment inside the streamer quenches it.
- **Negative streamers**: Velocity drops below electron drift speed.

![Graph showing the variation of $E_{\pm t}$ with L for different attenuation levels and experimental data.](image)
Streamer threshold fields

Threshold field $E_{\pm t}$ is the minimum E_e at which propagation is still possible. It depends on L and the physical reason is different for different polarities:

- **Positive streamers**: Three-body attachment inside the streamer quenches it.
- **Negative streamers**: Velocity drops below electron drift speed.

![Graph showing the relationship between L and $E_{\pm t}$ for different attenuation values.](image)
Outline

Introduction
Streamer mechanism

Model
Goal and approach
Reduced system of equations
Analogy with flat-front theory

Results
Positive streamers
Negative streamers
Threshold fields

Conclusions
We describe a streamer electric discharge in air by a system of algebraic equations, which have a solution as function of external field E_e, streamer length L and streamer radius a.

By employing max-V criterion, we obtain a unique solution which depends only on external conditions E_e and L.

Calculations produce results for V and a compatible with observations.

Propagation thresholds are functions of L and are determined by different reasons for positive and negative streamers and are compatible with experimental values $E_{+t} \approx 0.45$ MV/m, $E_{-t} \approx 0.75–1.25$ MV/m [Raizer, 1991, p. 362].
We describe a streamer electric discharge in air by a system of algebraic equations, which have a solution as function of external field E_e, streamer length L and streamer radius a.

By employing max-V criterion, we obtain a unique solution which depends only on external conditions E_e and L.

Calculations produce results for V and a compatible with observations.

Propagation thresholds are functions of L and are determined by different reasons for positive and negative streamers and are compatible with experimental values $E_{+t} \approx 0.45 \text{ MV/m}$, $E_{-t} \approx 0.75–1.25 \text{ MV/m}$ [Raizer, 1991, p. 362].
We describe a streamer electric discharge in air by a system of algebraic equations, which have a solution as function of external field E_e, streamer length L and streamer radius a.

By employing max-V criterion, we obtain a unique solution which depends only on external conditions E_e and L.

Calculations produce results for V and a compatible with observations.

Propagation thresholds are functions of L and are determined by different reasons for positive and negative streamers and are compatible with experimental values $E_{+t} \approx 0.45$ MV/m, $E_{-t} \approx 0.75–1.25$ MV/m [Raizer, 1991, p. 362].
We describe a streamer electric discharge in air by a system of algebraic equations, which have a solution as function of external field E_e, streamer length L and streamer radius a.

By employing max-V criterion, we obtain a unique solution which depends only on external conditions E_e and L.

Calculations produce results for V and a compatible with observations.

Propagation thresholds are functions of L and are determined by different reasons for positive and negative streamers and are compatible with experimental values $E_{+t} \approx 0.45$ MV/m, $E_{-t} \approx 0.75–1.25$ MV/m [Raizer, 1991, p. 362].
Acknowledgements

This study was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n. 320839 and the Research Council of Norway under contracts 208028/F50, 216872/F50 and 223252/F50 (CoE).
References

Outline

Slides for extended presentation
 Reduced system of equations: details
System of equations

System of algebraic equations

1. Relation between E fields, determined by electrostatic redistribution of charges on the surface.
2. Continuity of total (conductivity + displacement) current flowing through the streamer front.
3. Propagation stability criterion $\tau_M \sim \tau_{\text{ion}}$, connecting ionization with the maximum field.
4. Velocity-radius relation, determined by the photoionization mechanism [Pancheshnyi et al., 2001].
Equation 1: Fields (relation between E_s, E_f)

- **External** E_e (*given!*)
 - Inside $E_s < E_e$ due to high conductivity, all charges are at surface
 - Still $E_s > 0$ because there is a current in the channel $\propto n_s$
 - Just outside $E_f > E_e$

Use electrostatic model (method of moments).
Equation 1: Fields (relation between E_s, E_f)

- **External** E_e (given!)
- **Inside** $E_s < E_e$ due to high conductivity, all charges are at surface
 - Still $E_s > 0$ because there is a current in the channel $\propto n_s$.
 - Just outside $E_f > E_e$

Use electrostatic model (method of moments).
Equation 1: Fields (relation between E_s, E_f)

- External E_e (given!)
- Inside $E_s < E_e$ due to high conductivity, all charges are at surface
- Still $E_s > 0$ because there is a current in the channel $\propto n_s$.
- Just outside $E_f > E_e$

Use electrostatic model (method of moments).
Equation 1: Fields (relation between E_s, E_f)

- External E_e (given!)
- Inside $E_s < E_e$ due to high conductivity, all charges are at surface
- Still $E_s > 0$ because there is a current in the channel $\propto n_s$.
- Just outside $E_f > E_e$

Use electrostatic model (method of moments).
System of equations

System of algebraic equations

1. Relation between E fields, determined by electrostatic redistribution of charges on the surface.
2. Continuity of total (conductivity + displacement) current flowing through the streamer front.
3. Propagation stability criterion $\tau_M \sim \tau_{\text{ion}}$, connecting ionization with the maximum field.
4. Velocity-radius relation, determined by the photoionization mechanism [Pancheshnyi et al., 2001].
Equation 2: Currents (E_s, n_s, V)

- Charge on the surface per unit length λ is from MoM and E_s
- The total current is $I = \lambda V$
- It is also calculated from n_s and E_s as $I = \int J_c \, dA_{\perp}$

Equivalent approach: total current continuity [Babaeva and Naidis, 1997]:

$$J_c(\text{inside}) = J_d(\text{outside}) = \varepsilon_0 \partial_t E$$
Equation 2: Currents \((E_s, n_s, V)\)

- Charge on the surface per unit length \(\lambda\) is from MoM and \(E_s\)
- The total current is \(I = \lambda V\)
- It is also calculated from \(n_s\) and \(E_s\) as \(I = \int J_c \, dA_{\perp}\)

Equivalent approach: total current continuity [Babaeva and Naidis, 1997]:

\[
J_c(\text{inside}) = J_d(\text{outside}) = \varepsilon_0 \partial_t E
\]
Equation 2: Currents \((E_s, n_s, V)\)

- Charge on the surface per unit length \(\lambda\) is from MoM and \(E_s\)
- The total current is \(I = \lambda V\)
- It is also calculated from \(n_s\) and \(E_s\) as \(I = \int J_c \, dA_\perp\)

Equivalent approach: total current continuity [Babaeva and Naidis, 1997]:

\[J_c(\text{inside}) = J_d(\text{outside}) = \varepsilon_0 \partial_t E \]
Equation 2: Currents \((E_s, n_s, V)\)

- Charge on the surface per unit length \(\lambda\) is from MoM and \(E_s\)
- The total current is \(I = \lambda V\)
- It is also calculated from \(n_s\) and \(E_s\) as \(I = \int J_c \, dA_\perp\)

Equivalent approach: total current continuity [Babaeva and Naidis, 1997]:

\[
J_c(\text{inside}) = J_d(\text{outside}) = \varepsilon_0 \partial_t E
\]
System of algebraic equations

1. Relation between E fields, determined by electrostatic redistribution of charges on the surface.

2. Continuity of total (conductivity + displacement) current flowing through the streamer front.

3. Propagation stability criterion $\tau_M \sim \tau_{\text{ion}}$, connecting ionization with the maximum field.

4. Velocity-radius relation, determined by the photoionization mechanism [Pancheshnyi et al., 2001].
Equation 3: The front \((n_s, E_f)\)

The flat front theory is used to relate \(n_s\) to \(E_f\). We also have corrections to this theory:

- to include the current \(J_0\) (on the axis)
- to include curvature
- maximum field is not \(E_f\) but corrected value \(E_m\) (which depends on \(d\))
Equation 3: The front \((n_s, E_f)\)

The flat front theory is used to relate \(n_s\) to \(E_f\). We also have corrections to this theory:

- to include the current \(J_0\) (on the axis)
- to include curvature
- maximum field is not \(E_f\) but corrected value \(E_m\) (which depends on \(d\))
Equation 3: The front \((n_s, E_f)\)

The flat front theory is used to relate \(n_s\) to \(E_f\). We also have corrections to this theory:

- to include the current \(J_0\) (on the axis)
- to include curvature
- maximum field is not \(E_f\) but corrected value \(E_m\) (which depends on \(d\))
Equation 3: The front \((n_s, E_f)\)

The flat front theory is used to relate \(n_s\) to \(E_f\). We also have corrections to this theory:

- to include the current \(J_0\) (on the axis)
- to include curvature
- maximum field is not \(E_f\) but corrected value \(E_m\) (which depends on \(d\))
System of equations

System of algebraic equations

1. Relation between E fields, determined by electrostatic redistribution of charges on the surface.
2. Continuity of total (conductivity + displacement) current flowing through the streamer front.
3. Propagation stability criterion $\tau_M \sim \tau_{\text{ion}}$, connecting ionization with the maximum field.
4. Velocity-radius relation, determined by the photoionization mechanism [Pancheshnyi et al., 2001].
Equation 4: Photoionization \((V, E_f, a)\)

- Ionizing photons are produced in the front \(\propto\) ionization rate
- Photon production volume (and the number) \(\propto \pi a_{ph}^2, a_{ph} \sim a\)
- Ionization occurs remotely [Zheleznyak et al., 1982] \(\Rightarrow n_p/n_s\)
- Electron avalanche has length \(d\) in streamer frame, which depends on \(V\) and \(E_f\)
- The electron density in the end of avalanche must match \(n_s\)

Loeb [1965]:
\[
d \approx \frac{V}{\nu_i(E_f)} \Rightarrow V \approx \frac{a \nu_i(E_f)}{\log(n_s/n_p)}
\]
Equation 4: Photoionization (V, E_f, a)

- Ionizing photons are produced in the front \propto ionization rate
- Photon production volume (and the number) $\propto \pi a_{ph}^2$, $a_{ph} \sim a$
 - Ionization occurs remotely [Zheleznyak et al., 1982] $\Rightarrow n_p/n_s$
 - Electron avalanche has length d in streamer frame, which depends on V and E_f
 - The electron density in the end of avalanche must match n_s

Loeb [1965]: $d \approx V/\nu_i(E_f) \Rightarrow V \approx a\nu_i(E_f)/\log(n_s/n_p)$
Equation 4: Photoionization (V, E_f, a)

- Ionizing photons are produced in the front \propto ionization rate
- Photon production volume (and the number) $\propto \pi a_{ph}^2$, $a_{ph} \sim a$
- Ionization occurs remotely [Zheleznyak et al., 1982] $\Rightarrow n_p/n_s$
- Electron avalanche has length d in streamer frame, which depends on V and E_f
- The electron density in the end of avalanche must match n_s

Loeb [1965]: $d \approx V/\nu_i(E_f) \Rightarrow V \approx a\nu_i(E_f)/\log(n_s/n_p)$
Equation 4: Photoionization \((V, E_f, a)\)

- Ionizing photons are produced in the front \(\propto\) ionization rate
- Photon production volume (and the number) \(\propto\pi a_{ph}^2, a_{ph} \sim a\)
- Ionization occurs remotely [Zheleznyak et al., 1982] \(\Rightarrow n_p/n_s\)
- Electron avalanche has length \(d\) in streamer frame, which depends on \(V\) and \(E_f\)
- The electron density in the end of avalanche must match \(n_s\)

Loeb [1965]:
\[
d \approx \frac{V}{\nu_i(E_f)} \Rightarrow V \approx a\nu_i(E_f)/\log(n_s/n_p)
\]
Equation 4: Photoionization (V, E_f, a)

- Ionizing photons are produced in the front \propto ionization rate
- Photon production volume (and the number) $\propto \pi a_{ph}^2$, $a_{ph} \sim a$
- Ionization occurs remotely [Zheleznyak et al., 1982] $\Rightarrow n_p/n_s$
- Electron avalanche has length d in streamer frame, which depends on V and E_f
- The electron density in the end of avalanche must match n_s

Loeb [1965]: $d \approx V/\nu_i(E_f) \Rightarrow V \approx a\nu_i(E_f)/\log(n_s/n_p)$
The model summary figure

Figure: The streamer model