Full-wave method of calculation of electromagnetic fields in stratified media

Nikolai G. Lehtinen, Timothy F. Bell, Umran S. Inan

STAR Laboratory, Stanford University, Stanford, CA, U.S.A.
ICEAA ’11, Torino, Italy

September 15, 2011
Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
Capabilities:

- Arbitrary plane stratified medium, e.g., a horizontally-stratified magnetized plasma with an arbitrary direction of geomagnetic field (such as ionosphere)
- Arbitrary configuration of harmonically varying currents
- Provides full wave 3D solution of both whistler waves launched into ionosphere and VLF waves launched into Earth-ionosphere waveguide
- Stable against the “swamping” instability by evanescent waves
- Efficient use of the computer resources, easily parallelized

Applications:

- Trans-ionospheric propagation
- Earth-ionosphere waveguide propagation
- Scattering on D-region disturbances
Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
We work in Fourier (horizontal wave vector k_\perp) domain:

1. For each $k_\perp = \text{const}$ (Snell’s law) \implies find k_z, E and H in each layer for each of 4 plane wave modes: 2 up (u) and 2 down (d)

2. Use continuity of E_\perp and H_\perp between layers to find reflection coefficients $R_{u,d}$ and mode amplitudes u, d
 - Recursion order $R_{u,k+1} \rightarrow R_{u,k}$ and $u_k \rightarrow u_{k+1}$ provides stability against “swamping” of solution by evanescent waves
 - Represent source currents as boundary conditions on E_\perp and H_\perp between layers

3. Inverse Fourier transform from k_\perp to r_\perp
Full-wave method background

General description of waves in stratified media and reviews:

Methods using the same recursion order as the one described here:

Other methods:

Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
TE and TM modes
Highly-collisional plasma (low altitude)

\[h = 73 \text{ km} \]
\[X = \frac{\omega_p^2}{\omega^2} = 11.201, \quad Y = \frac{\omega_H}{\omega} = 139.96, \quad Z = \frac{\nu}{\omega} = 68.509 \]

- **Solid** = \(\Re(n_Z) \)
- **Dashed** = \(\Im(n_Z) \)
- \(Z \gg X \)
- The modes at the same frequency in the lower D-region are (almost) like in vacuum, with \(|n| = 1|\)}
Waves in magnetized plasma (high altitude)

h = 300 km

$X = \frac{\omega_p^2}{\omega^2} = 3.6738 \times 10^5$, $Y = \frac{\omega_H}{\omega} = 139.96$, $Z = \frac{\nu}{\omega} = 6.2761 \times 10^{-5}$

- Solid = Re(n_z)
- Dashed = Im(n_z)
- In VLF/ELF frequency range, the 4 solutions in ionosphere and magnetosphere are upward and downward whistler and evanescent waves.

UP: n_1 (evanescent)
UP: n_2 (whistler)
DOWN: n_3 (whistler)
DOWN: n_4 (evanescent)

Geomagnetic field

Solid = Re(n_z)
Dashed = Im(n_z)
In VLF/ELF frequency range, the 4 solutions in ionosphere and magnetosphere are upward and downward whistler and evanescent waves.
Comparison with absorption from Helliwell [1965]

Total losses (including absorption and reflection) for TE (circles) and TM (crosses) incident at nighttime ionosphere at \(\theta = 45^\circ \) with vertical in the plane of \(B_0 \).

- TE and TM modes behave differently
- Reflection losses \(~4 \text{ dB (not taken into account by Helliwell [1965])}\)
- The transmitted energy is maximized parallel to \(B_0 \)

Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
Schematics

The HF radiation (~3–10 MHz) modulates the polar electrojet at ELF/VLF frequencies ($f_{\text{mod}} \sim 300$ Hz–3 kHz)
Vertical slice of fields [Lehtinen and Inan, 2008]

HAARP HF beam at 3.2 MHz, ERP = 24 MW, $f_{\text{mod}} = 1875$ Hz.

Upper: B_x, formation of upward whistler “column” (∼3 W)
Lower: E_z, radiation into the Earth-ionosphere waveguide (∼1 W)
Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
Schematics
Waves are launched both into ionosphere and into the Earth-ionosphere waveguide.
SFWM results

Features of VLF radiation from NPM ($f = 21.4$ kHz, $P = 424$ kW, $B = 34$ μT, $d = 38.4^\circ$):

- Mode interference (both on the ground and in space)
- Higher attenuation westward on the ground
- Radiation higher along B into space
- West-East asymmetry for radiation into space

N. Lehtinen (Stanford)
Comparison with satellite data

DEMETER pass over NWC transmitter on October 24, 2006, starting at 14:50:40 UT:
(a) N_e; (b) VLF energy flux at 700 km; (c) data and SFWM results for two profiles of
electron-neutral collision rate ν_e [Lehtinen and Inan, 2009].

The deficit of measured VLF energy points to scattering on irregularities in the ionosphere
Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
V- and U-shaped streaks in satellite spectrograms

DEMETER observations [Parrot et al., 2008]

⇐ On path: V-shaped

Off-path: U-shaped ⇒
Calculated VLF “streaks” on and off-path of a satellite

\[\log_{10}(S_z) \text{ at } 120 \text{ km, } \frac{W}{m^2/Hz} \]

\[P_0 = 1 \text{ W/Hz, } \Delta y = 0 \text{ km} \]

\[\log_{10}(S_z) \text{ at } 120 \text{ km, } \frac{W}{m^2/Hz} \]

\[P_0 = 1 \text{ W/Hz, } \Delta y = 300 \text{ km} \]
Spectrogram of E field on the ground

$R^{1/2}E_z$ at 0 km, dB re $(V/m-m^{1/2})^2$/Hz, for $I^2 = 1 (A-m)^2$/Hz
Time-domain sferic waveform calculation

- Apply an inverse Fourier transform: $\omega \rightarrow t$ to the field calculated for a set of ω
- Validated using the sferic database [Said, personal communication, 2010]
Outline

1 Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2 Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3 Conclusions

4 Extra slides
- Modal (dispersion) relation: \(\text{det}(1 - R^d R^u) = 0 \)
- Attenuation is due to both absorption and radiation into ionosphere

Strongest modes at \(R_0 = 2000 \text{ km} \)
Waveguide radiation leaking into ionosphere

Waveguide leakage into ionosphere, at $R_0=2000$ km

S_z, dB re W/m2

$x=(R-R_0)$, km

QTM1
QTM2
QTM3
QTM4
Role of whistler radiation in the total attenuation

![Diagram showing attenuation and whistler radiation](image-url)

- Total
- Due to whistler radiation
Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
Schematics

ELVES are transient luminous events caused by lightning EMP (electromagnetic pulse)
Scattering in Born approximation

- **Born approximation**: neglect the scattered field E_s compared to the incident field E_0 inside the scattering region.
- E_0 acting together with the perturbation $\Delta \sigma$ creates currents which radiate E_s.
Scattered VLF wave (ΔA) on the ground

[Lehtinen et al., 2010]

- VLF wave propagates from left to right ($x = R - R_0$)
- scattering region is indicated by a circle at $x = 0$, $y = 0$

$$\int \Delta N_e \, dz, \, m^{-2}$$

![Vert 20V/m ×1](a)

![Horiz 5V/m ×60](b)
Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
Future work

- Method of moments instead of Born approximation (more accurate)
- Effects of the Earth’s curvature
- Long-distance propagation by using segmented path of a VLF signal
Summary

We have developed a full-wave method (Stanford FMW) which is stable against “swamping” and easily parallelized. It has been applied to calculate:

- Plane wave transport through ionosphere
- Modulated electrojet current radiation
- Radiation from ground-based transmitters
- Radiation from lightning
- Earth-ionosphere waveguide modes
- Scattering on ionospheric disturbances
Acknowledgments

This work was supported by

- ONR grant N0014-09-1-0034
- NSF grant ATM-0836326
- DARPA grant HR-0011-10-1-0058
- DoAF grant FA9453-11-C0011
- DTRA grant HDTRA-10-1-0115

to Stanford University.

Outline

1. Stanford Full-Wave Method (SFWM) code
 - Capabilities
 - Description

2. Applications of SFWM
 - Wave propagation through ionosphere
 - Modulated electrojet VLF radiation
 - VLF transmitter radiation
 - Radiation from lightning
 - Earth-ionosphere waveguide modes
 - Scattering on ionospheric disturbances

3. Conclusions

4. Extra slides
Amplitudes u, d and reflection coefficients R^u, R^d

- Separation into u and d:
 \[
 \text{Im} \, k_z \geq 0 \Rightarrow \text{upward mode,} \quad \text{Im} \, k_z \leq 0 \Rightarrow \text{downward mode}
 \]

- Total electromagnetic field $\propto e^{i(k_\perp \cdot r_\perp)}$ is a linear combination
 \[
 \begin{pmatrix}
 E(z) \\
 H(z)
 \end{pmatrix}
 = \mathcal{F}
 \begin{pmatrix}
 u(z) \\
 d(z)
 \end{pmatrix},
 \quad \mathcal{F} \text{ is a } 6 \times 4 \text{ matrix}
 \]

- Propagation up or down within a uniform layer:
 \[
 u(z > 0) = P^u(z)u(0), \quad d(z < 0) = P^d(z)d(0)
 \]
 \[
 P^u(z) = \begin{pmatrix}
 e^{ik^u_{z_1}z} & 0 \\
 0 & e^{ik^u_{z_2}z}
 \end{pmatrix}, \quad P^d(z) = \begin{pmatrix}
 e^{ik^d_{z_1}z} & 0 \\
 0 & e^{ik^d_{z_2}z}
 \end{pmatrix}
 \]

- $\|P^u\| \leq 1$, $\|P^d\| \leq 1 \Rightarrow$ numerical stability

- Reflection coefficients “from above” R^u and “from below” R^d (2 × 2 matrices):
 \[
 d = R^u u \quad u = R^d d
 \]

- Transporting the reflection coefficients through a layer of thickness h:
 \[
 R^u(z < 0) = P^d(z)R^u(0)P^u(z), \quad R^d(z > 0) = P^u(z)R^d(0)P^d(z)
 \]

- u, d are transported “forward”; R^u, R^d are transported “backward.”
At the boundaries between layers

- $\Delta E_\perp = 0$ and $\Delta H_\perp = 0$ at each layer boundary
- We find $R^{u'}$ in terms of R^u and $R^{d'}$ in terms of R^d
- We also find $u' = Uu$ and $d' = Dd$

The source currents are assumed to be flowing in thin layers \Rightarrow they give $\Delta E_\perp \neq 0$ and $\Delta H_\perp \neq 0$.
Upward flux in k_\perp-space

Earth-ionosphere waveguide modes manifest as **maxima in k_\perp-space**

- $k_\perp = \{k_x, k_y\}$
- $r_\perp = \{x, y\}$

\[k_\perp \leftrightarrow r_\perp \]

by Fourier transform.

\[
P_{up} = \int\int S_z(k_\perp) \frac{d^2k_\perp}{(2\pi)^2}
\]

– gives a more accurate result than

\[
\int\int S_z(r_\perp) \ d^2r_\perp:
\]

\[
\frac{P_{up}}{P} = 13\%
\]
Scattering in Born approximation

We must solve the wave equation:

$$\nabla \times (\nabla \times E) - k_0^2 \hat{\varepsilon} E = 0 \quad (k_0 = \omega / c)$$

where $E = E_0 + E_s$, $\hat{\varepsilon} = \hat{\varepsilon}_0 + \Delta \hat{\varepsilon}$,

- E_0 — incoming wave (e.g., a waveguide mode in stratified $\hat{\varepsilon}_0$);
- E_s — scattered wave;
- $\Delta \hat{\varepsilon}$ — inhomogeneous change in the dielectric permittivity tensor.

In a stratified waveguide $\nabla \times (\nabla \times E_0) - k_0^2 \hat{\varepsilon}_0 E_0 = 0 \quad \Rightarrow \quad \nabla \times (\nabla \times E_s) - k_0^2 \hat{\varepsilon}_0 E_s = k_0^2 \Delta \hat{\varepsilon} (E_0 + E_s)$

- **Born approximation**: neglect E_s compared to E_0 inside the scattering region (rhs).
- rhs gives the source currents for scattered waves:

 $$\nabla \times (\nabla \times E_s) - k_0^2 \hat{\varepsilon}_0 E_s \approx k_0^2 \Delta \hat{\varepsilon} E_0 = i k_0 Z_0 \Delta J$$

 where Z_0 is the impedance of free space.