Effects of artificial *D*-region disturbances on the transionospheric propagation of VLF waves

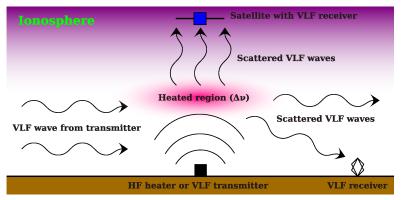
Nikolai G. Lehtinen¹, Timothy F. Bell¹, Umran S. Inan^{1,2}

¹STAR Laboratory, Stanford University, Stanford, CA, U.S.A.
²Koç University, Istanbul, Turkey

This work is supported by ONR grant N0014-09-1-0034, NSF grant ATM 0836326

January 7, 2011

Outline


- Overview
- - SFWM capabilities
 - SFWM description
- - Waveguide modes
 - Kinetic model results for Δv_e

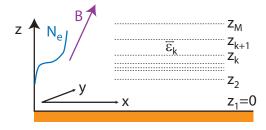
 - Scattered VLF wave in the ionosphere
- - VLF heating model
 - SFWM results for scattered waves.

Artificial *D*-region disturbances are caused by **HF heaters** or **VLF transmitters**. The ground VLF perturbations were calculated previously (using Earth-ionosphere waveguide mode theory both WKB and Born approximations):

- for HF heaters: Barr et al [1985]; Demirkol [Ph. D thesis, 1999]
- for VLF transmitters: *Inan et al* [1992]; *Rodriguez* [Ph. D thesis, 1994]

We use Stanford Full-Wave Method (SFWM), with Born approximation (but no WKB approximation).

Outline

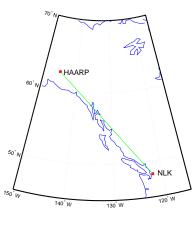

- Overview
- 2 Stanford Full-Wave Method (SFWM) code
 - SFWM capabilities
 - SFWM description
- VLF scattering by an HF heater
 - Waveguide modes
 - Kinetic model results for Δv_e
 - Scattering in Born approximation
 - Scattered VLF wave (ΔA) on the ground
 - Scattered VLF wave in the ionosphere
- 4 VLF scattering by a VLF transmitter heating
 - VLF heating model
 - SFWM results for scattered waves
- 5 Summary

Capabilities:

- Arbitrary plane stratified medium, e.g., a horizontally-stratified magnetized plasma with an arbitrary direction of geomagnetic field (such as ionosphere)
 - Arbitrary configuration of harmonically varying currents
 - Provides full wave 3D solution of both whistler waves launched into ionosphere and VLF waves launched into Earth-ionosphere waveguide
 - Stable against the "swamping" instability by evanescent waves
- Efficient use of the computer resources, easily parallelized

Applications:

- Trans-ionospheric propagation
- Earth-ionosphere waveguide propagation
- Scattering on D-region disturbances

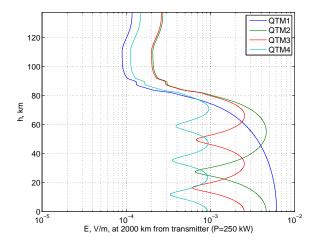

We work in Fourier (horizontal wave vector \mathbf{k}_{\perp}) domain:

- For each $\mathbf{k}_{\perp} = const$ (Snell's law) \Longrightarrow find k_z , E and H in each layer for each of 4 plane wave modes (2 up, 2 down)
- Use continuity of \mathbf{E}_{\perp} and \mathbf{H}_{\perp} between layers to find reflection coefficients $\mathbf{R}^{u,d}$ and mode amplitudes \mathbf{u} , \mathbf{d}
 - Recursion order $\mathsf{R}^u_{k+1} \to \mathsf{R}^u_k$ and $\mathbf{u}_k \to \mathbf{u}_{k+1}$ provides stability against "swamping" of solution by evanescent waves
 - \bullet Represent source currents as boundary conditions on \textbf{E}_{\perp} and \textbf{H}_{\perp} between layers
- f 3 Inverse Fourier transform from ${f k}_\perp$ to ${f r}_\perp$

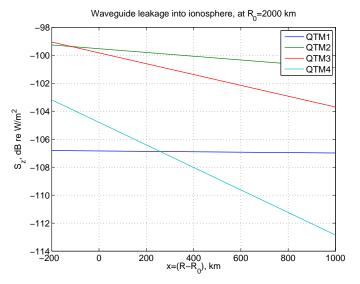
Outline

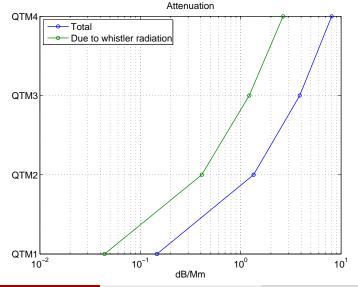
- Overvie
- 2 Stanford Full-Wave Method (SFWM) code
 - SFWM capabilities
 - SFWM description
- VLF scattering by an HF heater
 - Waveguide modes
 - Kinetic model results for Δv_e
 - Scattering in Born approximation
 - Scattered VLF wave (△A) on the ground
 - Scattered VLF wave in the ionosphere
- 4 VLF scattering by a VLF transmitter heating
 - VLF heating model
 - SFWM results for scattered waves
- 5 Summary

NLK VLF transmitter:

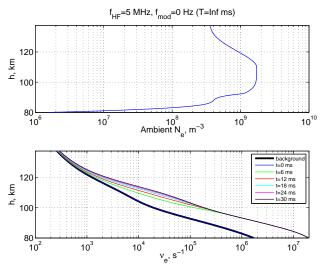

- Modelled as a ground-based vertical dipole
- f = 24.8 kHz
- P = 250 kW

HAARP HF heater:


- $f_{\rm HF} = 5 \, \rm MHz$
- ERP = 1 GW
- Beam width ~23 km [Payne et al, 2007], we assume Gaussian horizontal shape
- ΔT_e and Δv_e are found using kinetic equations


Strongest modes at $R_0 = 2000$ km (disturbance)

- Modes are calculated using SFWM using night-time ionosphere
- Attenuation is due to both absorption and radiation into ionosphere


Waveguide radiation leaking into ionosphere

Change in v_e due to heating

Steady heating; the heater is turned on at t = 0

We must solve the wave equation:

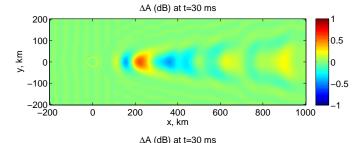
$$\nabla \times (\nabla \times \mathbf{E}) - k_0^2 \hat{\varepsilon} \mathbf{E} = 0 \qquad (k_0 = \omega/c)$$

where $\mathbf{E} = \mathbf{E}_0 + \mathbf{E}_s$, $\hat{\varepsilon} = \hat{\varepsilon}_0 + \Delta \hat{\varepsilon}$,

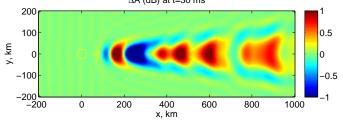
- \mathbf{E}_0 incoming wave (e.g., a waveguide mode in stratified $\hat{\epsilon}_0$);
- E_s scattered wave;
- $\Delta \hat{\epsilon}$ inhomogeneous change in the dielectric permittivity tensor.

In a stratified waveguide
$$\nabla \times (\nabla \times \mathbf{E}_0) - k_0^2 \hat{\epsilon}_0 \mathbf{E}_0 = 0 \implies$$

$$\nabla \times (\nabla \times \mathbf{E}_s) - k_0^2 \hat{\varepsilon}_0 \mathbf{E}_s = k_0^2 \Delta \hat{\varepsilon} (\mathbf{E}_0 + \mathbf{E}_s)$$

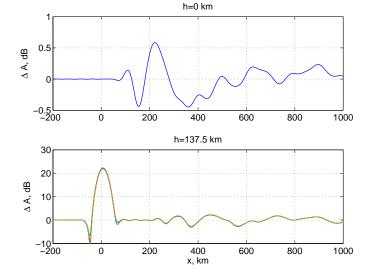

- Born approximation: neglect \mathbf{E}_s compared to \mathbf{E}_0 inside the scattering region (rhs).
- rhs gives the source currents for scattered waves:

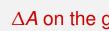
$$\nabla \times (\nabla \times \mathbf{E}_s) - k_0^2 \hat{\varepsilon}_0 \mathbf{E}_s \approx k_0^2 \Delta \hat{\varepsilon} \mathbf{E}_0 = i k_0 Z_0 \Delta \mathbf{J}$$

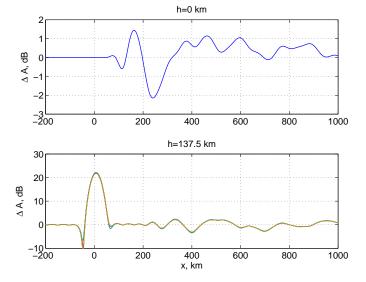

where Z_0 is the impedance of free space.

• scattering region is indicated by a circle at x = 0, y = 0

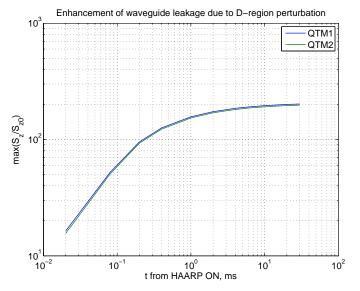
QTM1 mode




QTM2 mode



ΔA on the ground and in space: **QTM1 mode**

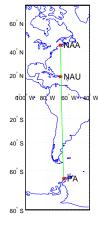


ΔA on the ground and in space: **QTM2 mode**


The flux scattered by the heated region upward significantly exceeds the waveguide leakage

Whistler flux scattered into space (h = 137.5 km)

- intense "column"
- weaker "tail" in the shadow of the scatterer


Results are shown for **QTM1** mode (other modes are similar)

Outline

- Overview
- 2 Stanford Full-Wave Method (SFWM) code
 - SFWM capabilities
 - SFWM description
- 3 VLF scattering by an HF heater
 - Waveguide modes
 - Kinetic model results for Δv_e
 - Scattering in Born approximation
 - Scattered VLF wave (ΔA) on the ground
 - Scattered VLF wave in the ionosphere
- VLF scattering by a VLF transmitter heating
 - VLF heating model
 - SFWM results for scattered waves
- 5 Summary

NAA/NAU (chosen after *Inan et al* [1992])

NAA VLF transmitter:

- f = 24 kHz
- P = 1000 kW

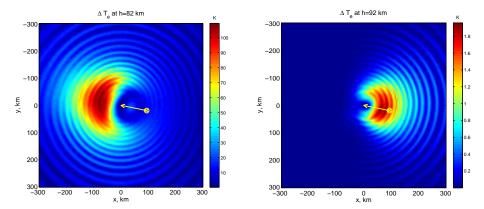
NAU VLF transmitter as a heater:

- f = 40.75 kHz
- P = 100 kW
- ΔT_e and Δv_e are found using SFWM and a model presented on the next slide

PA is the VLF receiver at Palmer station, Antarctica

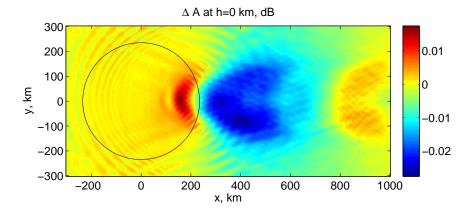
VLF heating model

 T_e is obtained from the temperature balance due to E-field heating and cooling due to collisions:

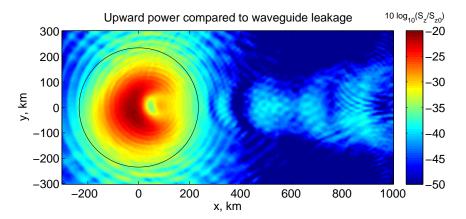

$$T_e = T_0 + \frac{2U}{3\delta v_e N_e k_B}$$

where

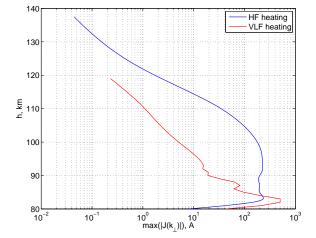
- δv_e is the energy loss rate, with $\delta \approx 1.3 \times 10^{-3}$ being the fraction of electron energy lost in a collision with a molecule [Inan et al. 1992]. Note that v_e is the *momentum* loss rate;
- $U = \frac{1}{2}\Re e(\mathbf{J}^* \cdot \mathbf{E})$ is the absorbed VLF wave power;
- $\mathbf{J} = \hat{\sigma} \mathbf{E}$, with anisotropic $\hat{\sigma}$
- E is calculated in the vicinity of the transmitter using the (linear) SFWM model
- $v_e = (T_e/T_0)v_{e0}$ is the heated collision frequency, v_{e0} is the background collision frequency [Inan et al, 1992].


ΔT_e

- VLF propagation is from left to right
- White arrow indicates (downward) B
- The "hole" in the middle is due to dipole radiation pattern
- At h=82 km, more heating at x<0 because the electrons are heated better when **E** \parallel **B**
- At h = 92 km, more heating at x > 0 because whistlers propagate more favorably along **B**


VLF perturbation on the ground

Experimental value: ± 0.03 –0.12 dB [Inan et al, 1992]


Scattered whistlers in ionosphere

Notice that the upward-scatter power flux is negligible compared to waveguide leakage.

Why such a difference in upward scattering?

The VLF heating occurred at lower altitudes, and therefore was more attenuated.

Outline

- Overvie
- 2 Stanford Full-Wave Method (SFWM) code
 - SFWM capabilities
 - SFWM description
- 3 VLF scattering by an HF heater
 - Waveguide modes
 - Kinetic model results for Δv_e
 - Scattering in Born approximation
 - Scattered VLF wave (ΔA) on the ground
 - Scattered VLF wave in the ionosphere
- 4 VLF scattering by a VLF transmitter heating
 - VLF heating model
 - SFWM results for scattered waves
- Summary

Summary:

- Stanford Full-Wave Method (SFWM) was applied to calculate Earth-ionosphere waveguide modes and their scattering on D-region disturbances
- The scattered waves are emitted both into the Earth-ionosphere waveguide and into the ionosphere
- Whistler waves scattered into the ionosphere form an intense "column" and a weaker "tail" in the shadow of the scatterer
- VLF enhancements inside the whistler "column" may significantly exceed the background leakage from the Earth-ionosphere waveguide
- D-region disturbances may contribute to the electromagnetic radiation environment in the ionosphere and magnetosphere

To do:

- Include VLF perturbations due to change in N_e (longer timescale, due to change in attachment coefficient)
- Kinetic model of VLF heating
- Experimental verification