Saturation Effects in the VLF Scattering off HF Heated Ionosphere

Nikolai G. Lehtinen, Timothy F. Bell and Umran S. Inan

VLF Group, Stanford University
Stanford, CA

National Radio Science Meeting
Boulder, CO

January 6, 2012
Outline

1. Overview

2. Stanford Full-Wave Method (SFWM) code

3. Scattering with the method of moments (MoM)
 - Model description
 - Results
Outline

1. Overview

2. Stanford Full-Wave Method (SFWM) code

3. Scattering with the method of moments (MoM)
 - Model description
 - Results
VLF scattering on *D*-region disturbances

The VLF perturbations are caused by *D*-region disturbances due to HF heaters and can be calculated using Earth-ionosphere waveguide mode theory:

- with WKB and Born approximations \([\text{Barr et al, 1985; Demirkol, Ph. D thesis, 1999}]\).
- with Born but no WKB \([\text{Lehtinen et al, 2011}]\)
- neither Born nor WKB \([\text{Foust et al, 2011; present work}]\)

We use Stanford Full-Wave Method (SFWM) together with the method of moments (MoM), which uses less computer resources than discontinuous Galerkin (DG) finite element method \([\text{Foust et al, 2011}]\).
VLF scattering by an HF heater: NLK/HAARP

NLK VLF transmitter:
- Modelled as a ground-based vertical dipole
- \(f = 24.8 \text{ kHz} \)
- \(P = 250 \text{ kW} \)

HAARP HF heater:
- \(f_{\text{HF}} = 5 \text{ MHz} \)
- ERP = 1 GW
- Beam width \(\sim 23 \text{ km} \) [Payne et al, 2007], we assume Gaussian horizontal shape
- \(\Delta T_e \) and \(\Delta v_e \) are found using kinetic equations
Incident VLF wave

Strongest modes at $R_0 = 2000$ km (disturbance)

- Modes are calculated using SFWM using night-time ionosphere
- Attenuation is due to both absorption and radiation into ionosphere

![Graph showing electric field strength vs. height for different QTM modes at 2000 km from transmitter (P=250 kW).]
Change in ν_e due to heating

Kinetic model results for steady heating starting at $t = 0$

$f_{HF} = 5\, \text{MHz}, f_{\text{mod}} = 0\, \text{Hz (T=Inf ms)}$

N_e, m^{-3}
h, km

$t=0\, \text{ms}$
$t=6\, \text{ms}$
$t=12\, \text{ms}$
$t=18\, \text{ms}$
$t=24\, \text{ms}$
$t=30\, \text{ms}$
Outline

1. Overview

2. Stanford Full-Wave Method (SFWM) code

3. Scattering with the method of moments (MoM)
 - Model description
 - Results
Stanford Full-Wave Method (SFWM) code

Capabilities:
- Arbitrary plane stratified medium, e.g., a horizontally-stratified magnetized plasma with an arbitrary direction of geomagnetic field (such as ionosphere)
- Arbitrary configuration of harmonically varying currents
- Provides full wave 3D solution of both whistler waves launched into ionosphere and VLF waves launched into Earth-ionosphere waveguide
- Stable against the “swamping” instability by evanescent waves
- Efficient use of the computer resources, easily parallelized

Applications:
- Trans-ionospheric propagation
- Earth-ionosphere waveguide propagation
- Scattering on D-region disturbances
We work in Fourier (horizontal wave vector k_\perp) domain:

1. For each $k_\perp = const$ (Snell’s law) \implies find k_z, E and H in each layer for each of 4 plane wave modes (2 up, 2 down)

2. Use continuity of E_\perp and H_\perp between layers to find reflection coefficients R_u,d and mode amplitudes u,d
 - Recursion order $R_u^{k+1} \to R_u^k$ and $u_k \to u_{k+1}$ provides stability against “swamping” of solution by evanescent waves
 - Represent source currents as boundary conditions on E_\perp and H_\perp between layers

3. Inverse Fourier transform from k_\perp to r_\perp
Outline

1. Overview

2. Stanford Full-Wave Method (SFWM) code

3. Scattering with the method of moments (MoM)
 - Model description
 - Results
Outline

1. Overview
2. Stanford Full-Wave Method (SFWM) code
3. Scattering with the method of moments (MoM)
 - Model description
 - Results
Previously used Born approximation

- Neglect the scattered field E_s compared to the incident field E_0 inside the perturbed region
- E_0 acting together with the perturbation $\Delta \hat{\sigma}$ creates currents which radiate E_s
- What if E_s is comparable to E_0?
Motivation: $\Delta \hat{\sigma}$ may be large
Description of the method of moments (MoM)

- Green’s function is a 3×3 matrix \hat{G} with components

 $$G_{ij}(r_o, r_s) \equiv E_i(r_o)$$
 created by current $J(r) = \hat{x}_j \delta(r - r_s)$

 - r_s — source position
 - r_o — observer position

 In our case, Green’s function is in the stratified medium, and currents $J = \Delta \hat{\sigma} E$ are due to conductivity perturbation.

- We have an integral equation for the scattered field E_s:

 $$E_s(r) = \int \hat{G}(r, r') \Delta \hat{\sigma}(r') \left[E_0(r') + E_s(r') \right] d^3r'$$

 where the integration is over the perturbed region ($\Delta \hat{\sigma} \neq 0$).

- MoM makes use of discretisation of J, E. Then the integral equation is solved numerically, and involves an inversion of a large matrix.
Outline

1. Overview

2. Stanford Full-Wave Method (SFWM) code

3. Scattering with the method of moments (MoM)
 - Model description
 - Results
3D calculation of E_z from scattering of QTM1 mode

Vertical slice

Calculated $|E_z|$

Calculated E_z, $\phi=0^\circ$

Horizontal slice

Calculated $|E_z|$, $h=90$ km

Calculated E_z, $h=90$ km, $\phi=0^\circ$
Error in $\Delta J = \Delta \hat{E}$ due to Born approximation
Amplitude change on the ground

Method of Moments, $\Delta A \in [-0.00632, 0.00624]$ dB

Born approximation, $\Delta A \in [-0.0202, 0.0213]$ dB
Upward flux change at 137.5 km

Method of Moments, $\Delta S_z \in [-3.59, 0.0813]$ dB

Born approximation, $\Delta S_z \in [-11.8, 0.067]$ dB
Conclusions:
- The previously calculated scattering in Born approximation overestimates the effect of strongly heated ionosphere;
- Quantitatively the results are still of the same order.

Acknowledgements:
This work was supported by Dept. of Air Force grant FA9453-11-C0011 and DTRA grant HDTRA1-10-1-0115 to Stanford University.