H3-5 Mode conversion of downward-propagating Langmuir waves in the topside ionosphere

Nikolai G. Lehtinen, Nicholas L. Bunch, and Umran S. Inan

STAR Laboratory, Stanford University, Stanford, CA, U.S.A.
NRSM, Boulder, CO

January 11, 2013
Outline

1 Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2 Comparisons with previous calculations

3 Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4 Conclusions
Outline

1. Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2. Comparisons with previous calculations

3. Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4. Conclusions
StanfordFWM capabilities and applications

Capabilities:
- Arbitrary plane stratified anisotropic medium
- Arbitrary configuration of harmonically varying currents
- Stable against the “swamping” instability by evanescent waves
- Efficient use of the computer resources, easily parallelized

Previous applications (VLF waves in cold plasma):
- Trans-ionospheric propagation
- Earth-ionosphere waveguide propagation
- Scattering on D-region disturbances
We work in Fourier (horizontal wave vector k_\perp) domain:

1. For each $k_\perp = const$ (Snell’s law) \implies find k_z, E and H in each layer for each of 4 plane wave modes (2 up, 2 down)

2. Use continuity of E_\perp and H_\perp between layers to find reflection coefficients $\hat{R}^{u,d}$ (2×2) and mode amplitudes u, d (of length 2)
 - Recursion order $\hat{R}^{u}_{k+1} \rightarrow \hat{R}^{u}_{k}$ and $u_{k} \rightarrow u_{k+1}$ provides stability against “swamping” of solution by evanescent waves
 - Represent source currents as boundary conditions on E_\perp and H_\perp between layers

3. Inverse Fourier transform from k_\perp to r_\perp
Outline

1 Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2 Comparisons with previous calculations

3 Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4 Conclusions
Hydro-electro-dynamic equations

\[
\nabla \times \mathbf{H} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + qn \mathbf{v} \quad q = -e
\]
\[
\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}
\]
\[
\rho n^{-\gamma} = \text{const} \quad \text{adiabatic, } \gamma = 3
\]
\[
m \left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right] = -\frac{\nabla \rho}{n} + q \left[\mathbf{E} + \mathbf{v} \times (\mathbf{B}_0 + \mu_0 \mathbf{H}) \right] - m \mathbf{v} \mathbf{v}
\]
\[
\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{v}) = 0
\]

No ions \(\implies\) \(\omega \gg \omega_{LH}\) (HF range).

- Linearize for small disturbances \(\mathbf{E}, \mathbf{H}, \mathbf{v}, \rho \propto e^{-i\omega t}\);
- 6 components \(\mathbf{E}_\perp, \mathbf{H}_\perp, v_z\) and \(\rho\) are continuous between slabs;
- 3 “upward” and 3 “downward” mode amplitudes \(u\) and \(d\);
- Generalization of stable recursive calculation of reflection coefficients \(\hat{R}^{u,d}\) (3 \(\times\) 3) and amplitudes \(u\) and \(d\) is straightforward.
Important plasma parameters

Electron sound speed

\[c_s = \sqrt{\frac{\gamma p_0}{m n_0}} \]

Dimensionless parameters

\[X = \frac{q^2 n_0}{m \varepsilon_0 \omega^2}, \quad Y = \frac{q B_0}{m \omega}, \quad Z = \frac{\nu}{\omega}, \quad U = 1 + iZ, \quad \Gamma = \left(\frac{c_s}{c} \right)^2 \]

Note:

- \(X = \omega_p^2/\omega^2, \ |Y| = |\omega_H|/\omega \), where \(\omega_p \) and \(\omega_H \) are plasma and gyro frequencies of electrons;
- \(\Gamma = (2\gamma/3)(\varepsilon_{th}/\varepsilon_0) = 2\varepsilon_{th}/\varepsilon_0 \), where \(\varepsilon_{th} \) is the thermal energy and \(\varepsilon_0 = mc^2 \) is the rest energy of an electron. We consider non-relativistic plasma only, i.e. \(\Gamma \ll 1 \).
Comparisons with previous calculations

1. Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2. Comparisons with previous calculations

3. Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4. Conclusions
Simulated ramp of N_e

- $B_0, \nu, T_e = \text{const} \implies Y, Z, \Gamma = \text{const}$.
- $N_e = N_e(z) \implies X = X(z)$.
- Important dimensionless parameter is $k_0 \Lambda$, where

$$\Lambda = \frac{X}{dX/dz}$$

- Gradient is simulated as a sinusoidal ramp of X
- Λ is evaluated at $z = 0$
Outline

1. Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2. Comparisons with previous calculations

3. Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4. Conclusions
Parameters used in the simulation

\[f = 65 \text{ kHz}, \quad Y = 0.5, \quad Z = 10^{-5}, \quad \Gamma = 5 \times 10^{-7}, \quad \kappa_0 \Lambda = 53.5606, \quad \theta_B = 64.2^\circ \]

- *Budden and Jones [1987]* used a similar but unstable FWM approach
- Conversion of electrostatic *ES* mode incident onto a gradient of increasing \(N_e \) into extraordinary right-handed *RX* and ordinary left-handed *LO* modes

Path in the CMA diagram

- At \(X_1 \) (bottom): *LO*, *RX*, *ES*; at \(X_2 \) (top): no waves
- small attenuation of propagating waves \(\Rightarrow \) exact \(X_{1,2} \) are not very important.
We reproduced the features of Budden and Jones [1987, Fig 2], such as the effect of the radio window at $n_x = \sqrt{Y/(1 + Y)} \sin \theta_B = 0.520$. The backscattering $ES \rightarrow ES$ is lower than Budden and Jones [1987] result due to attenuation of ES waves.
Outline

1. Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2. Comparisons with previous calculations

3. Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4. Conclusions
Comparisons with previous calculations

- \textit{Mjølhus} [1990] used contour integration in the complex k_z-plane;
- Calculated attenuation $A(p)$ (dimensionless fraction of power) of LO wave when reflected from an upward ramp in N_e;
- Parameter is dimensionless factor $p = (k_0 \Lambda)^{1/3} Y^{1/2}$

\textit{Mjølhus} [1990, Fig 10]

Results are the same, except non-zero $A(p)$ at $p \to \infty$ due to collisions.
Outline

1. Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2. Comparisons with previous calculations

3. Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4. Conclusions
Comparisons with previous calculations

- *Kim et al* [2008] used a fluid model;
- Calculated LO attenuation $A(p, q)$
- Parameters are dimensionless Mjølhus factors

 $$q = (k_0 \Lambda)^{1/3} n_x, \quad p = (k_0 \Lambda)^{1/3} \gamma^{1/2}$$

Kim et al [2008, Fig 6]

The peaks are in the same place!
Outline

1 Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2 Comparisons with previous calculations

3 Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4 Conclusions
Outline

1. Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2. Comparisons with previous calculations

3. Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4. Conclusions
Consider a small density change around the resonance Path in the CMA diagram

At X_1 (bottom): LO, Z, ES; at X_2 (top): LX
Refractive index surfaces at $Y < 1$ near $X = 1$

Typical ionosphere, $f = 5$ MHz

Z and ES waves are actually the same, separated by the resonance cone. Also, Z and LX are the same for $\theta \neq 0$. This opens a possibility of conversion $ES \rightarrow Z \rightarrow LX$.
Outline

1. Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2. Comparisons with previous calculations

3. Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4. Conclusions
Efficency of conversion

The parameter is now $L = z_{\text{max}} - z_{\text{min}}$, the width of the ramp; $k_0 \lambda = \left(\frac{2L}{\lambda_0} \right) \frac{2X_0}{\Delta X}$.
Outline

1. Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2. Comparisons with previous calculations

3. Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4. Conclusions
Double internal reflection

- Total internal reflection of upward ES into downward ZB (“backward”) mode on the resonance cone (with S_z opposite to $k_z = k_0 q$).
- As ZB mode propagates downwards to the lower density region, the resonance cone becomes wider and the mode gets further away from it.
- At some point with $q > 0$, the downward ZB coalesces with upward ZF (“forward”) mode, and converts to it in the total internal reflection process.
- The extraordinary ZF mode becomes LX mode above the ramp, without being affected by the resonance at $X = 1$.

Lehtinen et al (Stanford) Wave conversion in warm plasma January 11, 2013 25
Outline

1. Stanford Full-Wave Method (StanfordFWM)
 - Algorithm description (cold plasma)
 - Generalization to warm plasma

2. Comparisons with previous calculations

3. Conversion of Langmuir into electromagnetic waves in the ionosphere
 - Waves at the top and the bottom of a small N_e ramp
 - Stanford FWM results
 - Explanation of the conversion efficiency

4. Conclusions
Conclusions

- We generalized StanfordFWM to warm plasma
- Results compare well to previous workers’
- There is efficient conversion $ES \leftrightarrow EM$ due to total internal reflection mechanism